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Abstract

Analyst cash flow expectations deviate from rational expectations and correlate with stock prices.

Does this correlation arise solely because these biased expectations are shared by investors who impact

prices? Or do prices impact analyst expectations? I provide evidence of the latter mechanism. Using ex-

ogenous price variation from index reconstitutions and mutual fund flow-induced trading, I find analysts

raise their cash flow expectations in response to price increases unrelated to fundamentals. This impact

of prices on analyst cash flow expectations explains approximately half of the covariance between these

objects. These results have important implications for models used to interpret analyst expectations.
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1 Introduction

A large literature examines the impact of subjective beliefs about fundamentals — beliefs about future

cash flows that may not be consistent with rational expectations — on asset prices. Due to the lack of

data on investor beliefs, this literature often uses equity research analyst cash flow expectations as a proxy.

Analyst cash-flow expectations correlate strongly with prices, match the magnitude of price variation, have

predictable forecast errors, and negatively predict future returns. Previous work interprets these stylized

facts with models that assume biased analyst cash flow expectations are shared by investors and so distort

prices, but do not depend on prices (La Porta (1996); De Bondt and Thaler (1990); Bordalo et al. (2019,

2022); De La O and Myers (2021, 2023); Nagel and Xu (2021); De la O, Han and Myers (2023)).

However, a different mechanism may underlie these stylized facts: prices may impact analyst cash flow

expectations. For example, assume a decrease in discount rate raises stock price, while investor cash flow

expectations do not change. Analysts do not know price rose because the discount rate fell, and instead raise

their cash flow expectations so their personal valuations match the higher price. Thus, analyst expectations

correlate with price. Since these expectations are “too high,” they predict future forecast errors and returns.

Yet these biased analyst cash flow expectations did not cause the price change; they simply reflect the price

change caused by the discount rate decrease.

In this paper I present the first evidence that prices impact analyst cash flow expectations. Using

two instruments based on Russell index reconstitution (Chang, Hong and Liskovich (2014); Pavlova and

Sikorskaya (2023)) and mutual fund flow-induced trading (Lou (2012); Li (2021); Ben-David et al. (2022);

Li, Fu and Chaudhary (2022)), I find in the cross section of equities that an exogenous 1% price increase

raises analyst long-term earnings growth (LTG) expectations by 5 basis points and one to four year earnings-

per-share (EPS) expectations and forecast errors by 20 to 40 basis points. These increases are persistent:

analysts do not ex-post revise their expectations downward over the next year. These increases also appear

permanent in the term structure of analyst expectations: they do not shrink as forecast horizon grows.

This impact of prices on analyst cash flow expectations is economically significant: it explains about

half of the covariance between these objects. As Figure 1 displays, this mechanism explains 60% of the

cross-sectional covariance of prices with LTG expectations, and 40% of the covariance with one to four

year EPS expectations. Thus, this mechanism is quantitatively as important as the mechanism previous

work focuses on (which explains the remainder of these covariances): that information and sentiment shocks

to analyst expectations are shared by investors, and so impact prices. Since these results are in the cross
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Figure 1: Decomposition of Covariance Between Analyst Cash Flow Expectations and Prices

This figure displays the proportion of the covariance of quarterly analyst cash flow expectation changes with contem-
poraneous price changes explained by the impact of prices on analyst cash flow expectations (red) and by common
information or sentiment shocks to analyst and investor expectations (grey). These proportions sum to one. The left
and right panels display this decomposition for changes in long-term earnings growth expectations and revisions to
one to four year EPS expectations, respectively. Error bars represent quarterly block-bootstrapped 95% confidence
intervals. See Section 5.3 for details.

section, there remains an open question of how prices impact cash flow expectations for the market.

These results are inconsistent with typical models used to interpret analyst cash flow expectations1,

which feature two core assumptions: 1) homogeneous analyst and investor beliefs, and 2) no feedback

from prices to cash flow expectations (only “biased learning from exogenous fundamentals” in the terms of

Bastianello and Fontanier (2021b)).

However, these results are consistent with two alternative model classes that relax each of these as-

sumptions. The first class relaxes the assumption of homogeneous beliefs, such as models with dispersed

information (e.g. Grossman and Stiglitz (1980); Hellwig (1980); Dubey, Geanakoplos and Shubik (1987);

Kyle (1989); Jackson (1991); Mendel and Shleifer (2012)). In these models, at least some investors’ cash

flow expectations do not depend on prices, but analysts learn from prices, which reflect those investors’

private information. The second class allows homogeneous cash flow expectations, but relaxes the assump-

tion of no feedback from prices to these common expectations, such as models of price extrapolation (e.g.

Jin and Sui (2022)). In these models, exogenous price rises today raise expectations of future prices, and

agents mechanically raise cash flow expectations to justify these higher price expectations.

These latter two model classes present alternative interpretations of correlations of analyst cash flow

1La Porta (1996); De Bondt and Thaler (1990); Bordalo et al. (2019, 2022); De La O and Myers (2021, 2023); Nagel and
Xu (2021); De la O, Han and Myers (2023)
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expectations with prices, future returns, and forecast errors. In the models used in most previous work,

biases in analyst cash flow expectations drive price variation. In these latter two classes, other variables

(e.g. noise shocks, discount rates, biased price expectations) can drive prices, and analyst expectations may

simply reflect price variation.

My results imply these alternative interpretations should be taken seriously when working with ana-

lyst cash flow expectations, and so motivate further study of heterogeneous beliefs and endogenous belief

formation mechanisms.

The key challenge in measuring the impact of prices on analyst cash flow expectations is finding exoge-

nous variation in prices. I need price variation due to noise trading unrelated to cash flow news, which creates

omitted variable bias by impacting analyst expectations (directly) and prices (via investor expectations).

To tackle this challenge, I use two price instruments from previous work: benchmarking intensity changes

around Russell index reconstitutions (Pavlova and Sikorskaya (2023)) and mutual fund flow-induced trad-

ing (Lou (2012)). These instruments use different assumptions, variation, and samples, yet yield similar

estimates of the impact of prices on analyst cash flow expectations, which suggests this result is robust.

First, I use changes in benchmarking intensity around Russell index reconstitutions, following Pavlova

and Sikorskaya (2023). Each June, Russell ranks stocks based on May-end market capitalization and assigns

them to the Russell 1000 and 2000 indices based on a mechanical rank cutoff: those above the cutoff

are assigned to the Russell 1000, and those below are assigned to the Russell 2000. Historically, more

institutional capital has been benchmarked to the Russell 2000 than 1000. Hence, a Russell 1000 stock whose

May market cap falls just below the cutoff moves to the Russell 2000, undergoes inflows of institutional

capital due to benchmarking, and experiences positive returns in the reconstitution month of June (the

“index effect”). Conditional on the May-end market cap, these reconstitution returns are exogenous to cash

flow news (Chang, Hong and Liskovich (2014); Crane, Michenaud and Weston (2016); Glossner (2019)).

Pavlova and Sikorskaya (2023) note stocks that switch between the Russell 1000 and 2000 Blend indices

also switch between the Russell 1000 and 2000 Value or Growth indices, which have different levels of bench-

marked capital. Thus, two stocks moving from the Russell 1000 to 2000 can face different benchmarking

flows, and so different reconstitution returns. To address this heterogeneity, Pavlova and Sikorskaya (2023)

measure changes in benchmarking intensity (BMI) — a stock’s total inelastic demand from all benchmarked

managers — due to Russell reconstitution. Stocks with larger BMI increases face more price pressure.

Following Pavlova and Sikorskaya (2023), I use June BMI changes for stocks in a narrow window around
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the Russell market cap cutoffs to instrument for price. I find an exogenous, reconstitution-driven 1% price

increase raises analyst one to four year EPS expectations by 40 basis points.

Second, I use the mutual fund flow-induced trading (FIT) instrument of Lou (2012) (similar to the flow-

to-stock instrument of Wardlaw (2020)). Flows induce funds to do some mechanical rebalancing: funds tend

to scale their preexisting holdings proportionally in response to flows. This predicted mechanical component

of the cross-sectional trading induced by flows is uninformed and can provide exogenous price variation.

An exogenous, flow-driven 1% price increase raises analyst one to four-year EPS expectations by 20 basis

points, which is not statistically distinct from the 40 basis points estimate from the BMI instrument and

does not shrink as forecast horizon grows. Moreover, the greater coverage of the FIT instrument (all stocks

held by mutual funds) than the BMI instrument (stocks in narrow windows around Russell market cap

cutoffs) also allows precise measurement of the impact of prices on LTG expectations, which far fewer

analysts report than annual EPS expectations. An exogenous 1% price increase raises LTG expectations by

5 basis points. For both expectations types, these increases do not revert over the next year.

The FIT instrument does not require mutual fund flows to be exogenous. Flows are “aggregate shocks”

within each quarter and do not create cross-sectional variation in the FIT instrument across stocks. Hetero-

geneous ownership shares create variation by providing heterogeneous exposures to these aggregate shocks

across stocks: stocks owned in greater proportion by a fund are more exposed to its flows. Hence, the iden-

tifying assumption is ownership shares must not correlate with analyst cash flow expectations shocks across

stocks. This condition is a special case of the result that exogenous shares are sufficient for a shift-share

instrument to be exogenous (Goldsmith-Pinkham, Sorkin and Swift (2020)). Ownership shares and analyst

belief shocks depending on common stock characteristics can violate this exogenous shares assumption.

Controlling for characteristics (interacted with time fixed effects) associated with the ownership shares of

funds that drive most of the FIT instrument variation yields similar results. Controlling for unobserved

characteristics from a latent factor model that explain most ownership share variation also yields similar

results. Funds holding portfolios of few stocks can raise similar issues, so I construct the FIT instrument

from only funds with many holdings and find similar results. Systematic deviations from the proportional

trading assumption can also raise similar issues (Berger (2023)), so I construct the instrument only from

passive funds, which deviate far less from proportional trading than active funds, and find similar results.

This paper proceeds as follows. Section 2 introduces my test for if prices impact analyst cash flow ex-

pectations and explains how this impact alters interpretations of these expectations. Section 3 discusses the
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data. Sections 4 and 5 present evidence of price impact on analyst cash flow expectations using benchmark-

ing intensity changes around Russell index reconstitutions and the FIT instrument. Section 6 concludes.

1.1 Related Literature

This paper relates to three bodies of literature: empirical work that uses analyst expectations as a proxy

for investor beliefs, theoretical work on the impact of prices on cash flow expectations, and previous work

that examines how different economic agents respond to exogenous price changes.

First, this paper relates to a large literature going back at least to Malkiel (1970) that uses analyst

cash flow expectations as a proxy for investor expectations.2 Most relevant is a growing body of work using

analyst cash flow expectations to test asset pricing models in which investor beliefs deviate from rational

expectations. A main conclusion of this literature is variation in investors’ subjective cash flow expectations

can explain much — if not all — of the time series and cross-sectional variation in stock prices. Chen, Da

and Zhao (2013) find short- and long-term analyst earnings expectations revisions can explain most price

variation in the cross section of stocks and aggregate market. De La O and Myers (2021) and De la O, Han

and Myers (2023) find short-term analyst cash flow expectations explain much of the variation in aggregate-

market and cross-sectional valuation ratios. De La O and Myers (2023) find forecast errors in short-term

analyst cash flow expectations and long-term professional forecaster inflation expectations explain aggregate

stock and bond market price variation. La Porta (1996), Bordalo et al. (2019), and Bordalo et al. (2022)

find analyst LTG expectations correlate with valuation ratios in the cross section of stocks and negatively

predict future returns. Nagel and Xu (2021) and Bordalo et al. (2022) find similar results for the aggregate

market. De Bondt and Thaler (1990), La Porta (1996), Bordalo et al. (2019), and Bordalo et al. (2022) find

predictable analyst expectation revisions and errors for the cross section of stocks and aggregate market.

These results contradict rational expectations models, in which discount rate variation explains most

aggregate market price variation and expectation revisions and errors are not predictable. Thus, these

results motivate models in which investors share analyst cash flow expectations that deviate from rational

expectations and distort prices (Bordalo et al. (2019, 2022); Nagel and Xu (2021); De La O and Myers (2021,

2023); De la O, Han and Myers (2023)). In these models, prices do not impact cash flow expectations; biases

arise only from biased learning from exogenous fundamentals (Bastianello and Fontanier (2021b)).

This paper provides evidence of a different mechanism underlying correlations of analyst cash flow

2E.g. Frankel and Lee (1998); Lee, Myers and Swaminathan (1999); Lee and Swaminathan (2000); Hribar and McInnis
(2012); Bouchaud et al. (2019); Brandon and Wang (2020); Landier and Thesmar (2020) among many others.
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expectations with prices, future returns, and forecast errors: prices impact analyst cash flow expectations.

While much of the literature overlooks this mechanism, the contribution of this paper is to provide the first

evidence that prices impact analyst cash flow expectations and demonstrate this mechanism is quantitatively

important.3 These results are inconsistent with the aforementioned models with homogeneous analyst and

investor cash flow expectations that do not depend on prices. Moreover, these results suggest biases in

analyst cash flow expectations may not distort prices, but may simply reflect distortions from other variables

(e.g. noise shocks, discount rates, biased price expectations). Since my results are in the cross section, they

cannot speak directly to time series correlations of analyst expectations with the aggregate market.

Second, this paper relates to theoretical work on the impact of prices on cash flow expectations. The

price impact on analyst cash flow expectations I document is consistent with models featuring learning from

prices (e.g. Grossman and Stiglitz (1980); Hellwig (1980); Dubey, Geanakoplos and Shubik (1987); Kyle

(1989); Jackson (1991); Mendel and Shleifer (2012)).4 However, previous work using analyst expectations

as a proxy for investor beliefs has generally not accounted for this learning from prices mechanism. This

paper provides the first evidence that analyst cash flow expectations behave in a manner consistent with

learning from prices. This price impact on analyst cash flow expectations is also consistent with certain

models of price extrapolation (e.g. Jin and Sui (2022)).

Third, this paper relates to work on how different agents respond to exogenous price changes. Previous

work uses mutual fund flow-driven price pressure to examine the impact of prices on various corporate

finance outcomes.5 A separate literature uses Russell index reconstitutions to study the impact of institu-

tional and passive ownership on corporate governance and product market outcomes.6 This paper uses both

instruments to study how exogenous price changes impact analyst cash flow expectations. Importantly, I

use the Lou (2012) mutual fund flow-induced trading instrument for prices, which is not subject to the

Wardlaw (2020) critique of the Edmans, Goldstein and Jiang (2012) version of this instrument.7

3Some instances of previous work consider this mechanism. E.g. Malkiel (1970) muses: “The strong correlation between
price-earnings multiples and predicted growth rates leads one to question the line of causality. Do stocks with high expected
growth rates tend to sell at high price- earnings multiples because investors actively bid up the shares of companies with
favorable prospects? Or does the security analyst see a large price-earnings ratio in the market and decide from this that the
firm in question must indeed be a ‘growth stock?’”

4Glaeser and Nathanson (2017); Bastianello and Fontanier (2021b,a); Bordalo et al. (2021) study mislearning from prices.
5E.g. Seasoned equity issuance (Giammarino et al. (2004); Khan, Kogan and Serafeim (2012)), M&A (Edmans, Goldstein

and Jiang (2012); Eckbo, Makaew and Thorburn (2018)), payout policy (Derrien, Kecskés and Thesmar (2013)), R&D spending
(Phillips and Zhdanov (2013)), shareholder activism (Norli, Ostergaard and Schindele (2015)), management earnings forecasts
(Zuo (2016)), analyst coverage (Lee and So (2017)), and investment Lou and Wang (2018); Dessaint et al. (2019).

6E.g. Schmidt and Fahlenbrach (2017); Appel, Gormley and Keim (2016, 2019, 2021); Heath et al. (2022); Sharma (2023)
7Wardlaw (2020) demonstrates the Edmans, Goldstein and Jiang (2012) construction of mutual fund flow-induced trading

mechanically depends on the current-period return and argues this dependence threatens the instrument’s exogeneity.
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Figure 2: Within Stock-Quarter Timeline

ya,n,t−1 ya,n,tyb,n,t−1 yb,n,t

∆pa,n,t

∆pb,n,t

Quarter t− 1 Quarter t

Illustration of staggered timing of expectation releases for two analysts a and b for the same stock n.

2 Identifying Price Impact on Analyst Expectations and Why it Matters

This section introduces my test for if prices impact analyst cash flow expectations. I first explain the

challenge in measuring this impact and why exogenous price variation proves necessary. I then present three

models of analyst expectations to explain how this impact alters interpretations of these expectations.

2.1 The Test

The goal of this paper is to determine if prices impact analyst cash flow expectations. The challenge in

measuring this impact is common information or sentiment shocks create omitted variable bias by impacting

analyst expectations (directly) and prices (via investor expectations). Consider this system of equations:

∆pa,n,t = Mza,n,t + εa,n,t (1)

∆ya,n,t = α∆pa,n,t + νa,n,t

∆ya,n,t is the quarterly change in analyst a’s expectations for stock n in quarter t. ∆pa,n,t is the contempo-

raneous percentage price change (ex-dividend return) between the two quarterly report dates for analyst a

for stock n in quarters t− 1 and t (the a subscript indicates different analysts report expectations for stock

n in quarter t on different days, and so face different inter-announcement price changes, as in Figure 2).

α is the impact of prices on analyst cash flow expectations. I want to test if α is positive. A regression

of analyst expectations on prices does not identify α because both variables experience other correlated

shocks εa,n,t and νa,n,t, which create omitted variable bias. For example, public signals about cash flows

(e.g. EPS announcements) that both investors and analysts learn from would appear in εa,n,t and νa,n,t.
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Yet if a noise-trader demand shock za,n,t provides exogenous price variation uncorrelated with analyst

cash flow expectations shocks νa,n,t, then the following two-stage least squares regression identifies α:

∆pa,n,t = a1za,n,t + e1,a,n,t

∆ya,n,t = α∆p̂a,n,t + e2,a,n,t

To obtain a consistent estimate of α, the price instrument za,n,t must satisfy:

1. (Relevance) M 6= 0 in (1): The instrument has an effect on price.

2. (Exogeneity) E[za,n,tνa,n,t] = 0: The instrument affects analyst cash flow expectations only through

price; it does not correlate with other shocks to analyst expectations. For example, if za,n,t correlates

with public information (e.g. EPS announcements) that both investors and analysts learn from, this

condition is violated. Thus, za,n,t must provide variation in prices that is unrelated to cash flow news.

To gauge the economic significance of α, I calculate the proportion of the cross-sectional covariance of prices

with analyst cash flow expectations due to the impact of prices on analyst expectations:

αVCX [∆pa,n,t]

CovCX (∆pa,n,t,∆ya,n,t)
=

Two Stage Least Squares Estimate of α
OLS Coefficient in Regression of ∆ya,n,t on ∆pa,n,t

. (2)

V CX and CovCX are the cross-sectional variance and covariance after removing time fixed effects.

Sections 4 and 5 describe strategies to identify α using different empirical noise trader demand shocks.

2.2 Three Models to Interpret Analyst Cash Flow Expectations

I present three stylized models that match common facts about analyst cash-flow expectations: they correlate

positively with prices8, negatively predict future returns9, and feature predictable forecast errors.10

The first model features the two core assumptions previous work11 uses to interpret these facts: homo-

geneous analyst and investor cash flow expectations and no feedback from prices to these expectations. The

second model relaxes the first assumption of belief homogeneity and involves analyst — but not investor

— learning from prices due to dispersed information. The third model relaxes the second assumption of no

8Chen, Da and Zhao (2013); De La O and Myers (2021); Bordalo et al. (2022); De la O, Han and Myers (2023)
9La Porta (1996); Bordalo et al. (2019, 2022)

10De Bondt and Thaler (1990); La Porta (1996); Bordalo et al. (2019, 2022)
11Bordalo et al. (2019, 2022); Nagel and Xu (2021); De La O and Myers (2021, 2023); De la O, Han and Myers (2023).
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feedback from prices and involves homogeneous investor and analyst cash flow expectations that depend

on prices due to price extrapolation.

In the first model, prices do not impact analyst cash flow expectations, which are shared by investors and

so distort prices. In the latter two models, prices impact analyst expectations. Biases in these expectations

do not distort prices, but reflect distortions from other variables (e.g. discount rates).

Thus, if prices impact analyst cash flow expectations, it is possible biases in these expectations reflect

price variation instead of driving it. We must consider heterogeneous beliefs (as in the second model) and

endogenous belief formation mechanisms (as in the third model) when interpreting these expectations.

2.2.1 Homogeneous Cash Flow Expectations and No Feedback from Prices

This model features the two assumptions previous work uses to interpret analyst expectations: homogeneous

analyst and investor beliefs and no feedback from prices to these beliefs. See Appendix A.1 for proofs.

There are two periods. There is one asset with fixed supply of one share and random period-two payoff:

D̃2 = D̄ + ε̃, ε̃ ∼ N(0, σ2
ε).

All tilde quantities represent random variables. I normalize the risk-free rate to zero.

A representative investor has initial wealth W1 and constant absolute risk aversion (CARA) utility over

terminal wealth W̃2:

U(W̃2) = − exp
[
−A

(
W̃2

)]
= − exp

[
−A

(
W1 +QI

1

(
D̃2 − P̃1

))]
.

QI
1 is the number of shares demanded in period one. P̃1 is the period-one price.

The investor and an analyst have the same biased expectation:

EI
1

[
D̃2

]
= EA

1

[
D̃2

]
= D̄ + s̃, s̃ ∼ N

(
0, σ2

s

)
, (3)

s̃ is a random sentiment shock in period one that does not depend on price.12 The market clearing price is:

P̃1 = D̄ + s̃−Aσ2
ε . (4)

12This sentiment shock serves the same purpose as an exogenous signal of D̃2 that the investor overweights (here s̃ doesn’t
predict D̃2, so the optimal weight is zero).
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This model matches the core set of stylized facts about analyst expectations.

Proposition 1. Prices correlate positively with analyst cash flow expectations: Cov
(
P̃1,EA

1

[
D̃2

])
> 0. The

period-one analyst expectation and price negatively predict the period-two return: Cov
(
EA
[
D̃2

]
, D̃2 − P̃1

)
=

Cov
(
P̃1, D̃2 − P̃1

)
< 0. The period-one analyst expectation and price negatively predict the period-two fore-

cast error: Cov
(
EA

1

[
D̃2

]
, D̃2 − EA

1

[
D̃2

])
= Cov

(
P̃1, D̃2 − EA

1

[
D̃2

])
< 0.

In this model, analysts and investors have the same biased cash flow expectations that distort prices

but do not depend on prices.

2.2.2 Relaxing Homogeneous Expectations: Dispersed Information

Consider an alternative model in which analysts learn from prices because investors have different beliefs.

See Appendix A.2 for proofs.

I make four changes to the previous model. First, I add a new shock η̃ to the random period-two payoff:

D̃2 = D̄ + η̃ + ε̃, η̃ ∼ N
(
0, τ−1

)
, ε̃ ∼ N

(
0, σ2

ε

)
.

Second, the CARA utility investor has rational expectations and knows η̃:

EI
1

[
D̃2

]
= D̄ + η̃.

Third, I introduce a noise trader with demand: QN
1 = z̃ ∼ N

(
0, σ2

z

)
. The market price is:

P̃1 = D̄ + η̃ − (1− z̃)Aσ2
ε . (5)

Fourth, there is an analyst who reports an expectation for D̃2 at the end of period one after observing

the price. The analyst does not know η̃, the private information of the CARA investor, nor the quantity

demanded by either investor. Given (5), price is a noisy signal of η̃ and the analyst will learn from the price.

The analyst uses Bayes rule, but has biased beliefs about the noise trader demand shock. The analyst

underestimates the noise trader demand shock variance, believing the noise shock is distributed as z̃ ∼

N
(
0, σ̂2

z

)
, where σ̂z < σz. Thus, he overestimates how informative price is about the CARA investor’s

private information, and so overreacts to price. Without this assumption, analyst forecast errors are not

predictable, but analyst expectations still correlate with prices and predict future returns.
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The analyst has the objectively correct prior for η̃, believing η̃ ∼ N(0, τ−1). Thus, letting ω̂−1 = A2σ4
ε σ̂

2
z ,

Bayes rule yields the following analyst posterior expectation:

EA
1

[
D̃2

]
= D̄ +

ω̂

τ + ω̂

(
P̃1 − D̄ +Aσ2

ε

)
. (6)

This model matches the same stylized facts about analyst expectations as the model in Section 2.2.1.

Proposition 2. Prices correlate positively with analyst cash flow expectations: Cov
(
P̃1,EA

1

[
D̃2

])
> 0. The

period-one analyst expectation and price negatively predict the period-two return: Cov
(
EA
[
D̃2

]
, D̃2 − P̃1

)
,

Cov
(
P1, D̃2 − P̃1

)
< 0. The period-one analyst expectation and price negatively predict the period-two

forecast error: Cov
(
EA

1

[
D̃2

]
, D̃2 − EA

1

[
D̃2

])
, Cov

(
P̃1, D̃2 − EA

1

[
D̃2

])
< 0.

In this model, biases in analyst expectations do not distort price; they simply reflect distortions caused by

the noise shock. Investors and analysts have different expectations; the noise shock z̃ drives a wedge between

these agents’ expectations. Thus, the correlations of analyst expectations with prices, future returns, and

analyst forecast errors do not shed light on investor rationality or the determinants of asset prices.

Shocks to risk aversion (A) or volatility (σε) that the analyst does not observe would serve the same

purpose as the noise trader demand shock. Thus, analyst learning from price implies that expected return

variation (i.e. discount rate variation) can drive a wedge between analyst and investor cash flow expectations.

For simplicity, I assume the analyst has no private information and so his expectation does not impact

price.13 One could easily extend this model to include analyst private information, in which case the analyst

expectation would impact price because the CARA investor would rationally learn from the analyst report.

In a more sophisticated model with heterogeneous investors, analyst expectations may align with those

of “uninformed” investors who learn from prices, but not with those of “informed” investors who do not.

2.2.3 Relaxing no Feedback from Prices: Price Extrapolation

Now consider a third model in which analysts and investors have the same cash flow expectations, which

depend on price due to price extrapolation (as in Jin and Sui (2022)). See Appendix A.3 for proofs.

13A large literature documents high-frequency price responses to analyst report releases (Davies and Canes (1978); Groth
et al. (1979); Barber and Loeffler (1993); Stickel (1995); Albert Jr and Smaby (1996); Francis and Soffer (1997); Park and
Stice (2000); Barber et al. (2001); Brav and Lehavy (2003); Irvine (2003); Asquith, Mikhail and Au (2005); Kerl and Walter
(2008); Fang and Yasuda (2014); Ishigami and Takeda (2018)).
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I make four changes to the Section 2.2.1 model. First, there are three periods and one cash flow in t = 3:

D̃3 = D̄ + ε̃, ε̃ ∼ N
(
0, σ2

ε

)
.

Second, there is a noise trader with demand in periods t = 1 and 2 of: QN
t = z̃t ∼ N

(
0, σ2

z

)
.

Third, the CARA investor and analyst have rational expectations in period two about D̃3:

EI
2

[
D̃3

]
= EA

2

[
D̃3

]
= D̄.

However, both agents have extrapolative expectations about the period-two price in period one:

EI
1

[
P̃2

]
= EA

1

[
P̃2

]
= EObj

1

[
P̃2

]
+ φP̃1, (7)

where EObj
1 represents the objective expectation under the true data generating process and φ > 0.

The market clearing prices in each period are:

P̃2 = D̄ − (1− z̃2)Aσ2
ε (8)

P̃1 =
1

1− φ
[
D̄ −Aσ2

ε − (1− z̃1)A3σ4
εσ

2
z

]
. (9)

Fourth, both agents form period-one cash flow expectations to rationalize the biased price expectations:

EI
1

[
D̃3

]
= EA

1

[
D̃3

]
= D̄ + φP̃1 (10)

Note that without extrapolation (φ = 0), this investor has rational expectations about D̃3 in period one.

However, with extrapolation (φ > 0), the period-one noise shock biases cash flow expectations.

This model matches the same stylized facts about analyst expectations as the model in Section 2.2.1.

Proposition 3. Prices correlate positively with analyst cash flow expectations: Cov
(
P̃1,EA

1

[
D̃3

])
> 0. The

period-one analyst expectation and price negatively predict the period-two return: Cov
(
EA

1

[
D̃3

]
, P̃2 − P̃1

)
,

Cov
(
P̃1, P̃2 − P̃1

)
< 0. The period-one analyst expectation and price negatively predict the period-three

forecast error: Cov
(
EA

1

[
D̃3

]
, D̃3 − EA

1

[
D̃3

])
, Cov

(
P̃1, D̃3 − EA

1

[
D̃3

])
< 0 .

In this model, analysts and investors have the same biased, period-one cash flow expectations. Yet these

biases do not distort price; they reflect distortions due to the noise shock and biased price expectations.
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3 Data

This paper uses four main data sources: analyst cash flow expectations, stock prices, Russell index con-

stituents, and mutual fund holdings and flows.

I use two sets of analyst cash flow expectations from I/B/E/S. First, I use the long-term earnings-per-

share (EPS) growth (LTG) expectations focused on by Bordalo et al. (2019), Nagel and Xu (2021), and

Bordalo et al. (2022). I/B/E/S defines the LTG expectations as representing analysts’ expected annual EPS

growth over a firm’s “next full business cycle,” which I/B/E/S describes as three to five years (Wharton

Research Data Services (2008)), though some work argues these expectations capture growth expectations

over longer horizons of up to five to ten years (Sharpe (2005)). I/B/E/S reports LTG expectations at the

stock × analyst institution × analyst × quarter level. I average LTG expectations for each stock within

each quarter at the analyst institution level and take quarterly differences to obtain a stock × analyst

institution × quarter panel of quarterly changes in LTG expectations.14

Second, I use the annual EPS expectations over shorter horizons of one to four years focused on by

De La O and Myers (2021, 2023), and De la O, Han and Myers (2023). I/B/E/S reports EPS forecasts at

the stock × fiscal year horizon × analyst institution × analyst × quarter level. For example, in the second

quarter of 2022 I see the Apple annual EPS forecasts issued by all equity research analysts at Goldman Sachs

for fiscal years 2022, 2023, etc. Forecast horizons extend up to ten fiscal years ahead, but coverage declines

with horizon (sharply after two years), and so I focus on the one to four year horizons. For each horizon, I

average EPS forecasts for each stock within each quarter at the analyst institution level (e.g. I average the

EPS forecasts for fiscal year 2022 for Apple made by all Goldman Sachs analysts during the second quarter

of 2022). I then linearly interpolate among horizons to construct fixed h-year horizon EPS forecasts. For

example, to obtain the one-year EPS forecast from June 2022 to June 2023, I interpolate between the fiscal

year 2022 and 2023 EPS forecasts.15 I then construct quarter-over-quarter EPS expectation revisions. Let

Ea,n,t+4h|t be the h-year ahead annual EPS expectation reported by analyst institution a for stock n in

14Using institution-level instead of analyst-level variation creates more quarter over quarter matches when computing
quarterly expectations changes. I winsorize these final values at the 5% level (within each horizon h) to remove some extremely
large outliers. Usually only one analyst at an institution covers stock n in quarter t. If multiple analysts in institution a cover
stock n in quarter t, they usually report expectations on the same day. If multiple analysts from institution a report expectations
for stock n in quarters t−1 or t on different days, I compute the quarterly inter-announcement price change (∆pa,n,t) between
the day of the first such expectation release in quarter t− 1 and the day of the last such expectation release in quarter t.

15De La O and Myers (2021) follow the same interpolation procedure.
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quarter t. I define the h-year ahead EPS expectation revision from quarter t to t+ 1 as:

∆Ea,n,t+4h|t+1 ≡
Ea,n,t+4h|t+1 − Ea,n,t+4h|t

Ea,n,t+4h|t
. (11)

I drop all observations where Ea,n,t+4h|t ≤ 0. Thus, I obtain a stock × analyst institution × quarter panel

of quarterly revisions in h-year EPS expectations, where h ranges from one to four years.16

The LTG and annual EPS expectations each have their own advantages. On one hand, present value

identities suggest the LTG expectations should correlate more strongly with prices, as documented in pre-

vious work (Bordalo et al. (2019, 2022, 2021)). On the other hand, the annual expectations have far greater

coverage, which enables more powerful tests. Moreover, the fixed forecast horizon means ∆Ea,n,t+4h|t+1

directly captures forecast error changes:

Forecast Errora,n,t+4h|t = Realized EPSn,t+4h − Ea,n,t+4h|t

Forecast Errora,n,t+4h|t+1 − Forecast Errora,n,t+4h|t = Ea,n,t+4h|t − Ea,n,t+4h|t+1.

The forecast error change is the negative of the expectation revision numerator in (11). Thus, the annual

expectation revisions demonstrate that not only do analyst cash flow expectations rise in response to

exogenous price increases, analyst forecast errors also rise (in magnitude, i.e. become more negative). Thus,

analysts do not raise cash flow expectations in response to exogenous price increases solely because these

increases raise actual future earnings.

I obtain stock price data from CRSP and accounting data to construct firm characteristics from the

Compustat North America Fundamentals Annual and Quarterly Databases.

The authors of Pavlova and Sikorskaya (2023) provide benchmarking intensity and constituent data.

To construct the flow-induced trading instrument of Lou (2012), I use mutual fund holdings from the

Thomson Reuters S12 database and mutual fund flows from the CRSP Mutual Fund database.17

4 Evidence from Index Reconstitutions

This section provides evidence that prices impact analyst cash flow expectations using my first exogenous

price shock: changes in benchmarking intensity around annual June Russell index reconstitutions.

16I winsorize these final values at the 5% level to remove some extremely large outliers.
17Following Wardlaw (2020), I drop sector mutual funds when constructing the flow-induced trading instrument.
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On a specified day in May, Russell ranks all eligible stocks by market capitalization. Stocks above a

specific rank cutoff are assigned to the Russell 1000, and those below are assigned to the Russell 2000.

Historically, more institutional capital has been benchmarked to the Russell 2000 than 1000. Thus, a stock

from the Russell 1000 in year t− 1 whose market cap falls just below the cutoff in year t will move to the

Russell 2000 in June, undergo inflows of institutional capital due to benchmarking, and experience positive

returns in June. Similarly, a stock from the Russell 2000 in year t − 1 whose market cap falls just above

the cutoff will move to the Russell 1000 and experience outflows and negative returns. Conditional on the

May rank-date market cap, Russell index membership in June is exogenous to fundamental news (Chang,

Hong and Liskovich (2014); Crane, Michenaud and Weston (2016); Glossner (2019)). Thus, the June returns

induced by this index reconstitution are also exogenous to fundamental news.

Pavlova and Sikorskaya (2023) note these reconstitution returns differ across stocks. Every stock in the

Russell 2000 Blend index is also in the Russell 2000 Value or Growth indices, which have different levels

of benchmarked capital. Every stock in the Russell 1000 Blend index is also in the Russell 1000 Value or

Growth indices, and some (those under market cap rank 200) are in the Russell Midcap Blend, Value, and

Growth indices. Thus, a stock moving from the Russell 1000 Value to the Russell 2000 Value may experience

different inflows of benchmarked capital — and so different price pressure — than a stock moving from the

Russell 1000 Growth to the Russell 2000 Growth.

The Pavlova and Sikorskaya (2023) benchmarking intensity (BMI) measure captures this heterogeneity:

BMIn,t =
∑

Index j

Institutional AUM Benchmarked to Index jt · 1 (n ∈ Index jt)
Index j Market Valuet

.

BMIn,t captures the inelastic demand for stock n in month t by all benchmarked mutual funds and ETFs.

It depends on which indices j the stock is part of and the proportion of the total market value of index

j that is held by benchmarked investors. Pavlova and Sikorskaya (2023) construct BMI from thirty-four

indices that account for about 90% of mutual fund and ETF assets, including the nine Russell benchmarks.

I use June BMI changes in each year for stocks in a narrow window around the Russell 1000/2000

reconstitution thresholds as a price instrument. Stocks with larger BMI changes experience more bench-

marking inflows and more price pressure. While BMI is generally endogenous because index membership

is, June BMI changes for stocks in this window are driven by Russell index membership changes, which

are exogenous to fundamental news conditional on the the May rank-date market cap. Thus, ∆BMIn,t

satisfies the exogeneity condition and is uncorrelated with analyst belief shocks (conditional on stock-level
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controls Xn,t discussed below):

E [∆BMIn,tνa,n,t |Xn,t] = 0,∀a, t.

Note the importance of controlling for the rank-date market cap. Bad news before the rank date could

impact analyst beliefs (directly) and ∆BMIn,t (by lowering the market cap and moving stock n from the

Russell 1000 to 2000). This situation threatens exogeneity. Yet since the bad news only impacts ∆BMIn,t

through the rank-date market cap, controlling for that market cap makes ∆BMIn,t conditionally exogenous.

One may be concerned that BMI increases raise cash flow expectations directly (instead of through

prices) if analysts pay attention to passive ownership increases and expect them to improve corporate

governance or product market outcomes. These scenarios would threaten exogeneity. However, previous

work finds mixed results for the effect of passive ownership increases on corporate governance quality.18

Moreover, switching from the Russell 1000 to 2000 correlates negatively or not at all with future profitability

and cash flows (Pavlova and Sikorskaya (2023); Sharma (2023)).19 Hence, it is unlikely analysts raise their

cash flow expectations directly due to the passive ownership increases accompanying BMI increases. Section

4.3 conducts additional tests to address this concern.

I run the following two-stage least squares regression:

∆pa,n,t = a1∆BMIn,t + β
′
1Xn,t + FEt + e1,a,n,t

∆Ea,n,t+4h|t = α∆p̂a,n,t + β
′
2Xn,t + FEt + e2,a,n,t,h. (12)

The first stage regresses quarterly percentage price changes between analyst reports on JuneBMI changes.20

The second stage regresses quarterly revisions to annual EPS expectations on instrumented price changes.

I restrict the sample to analyst expectations changes exposed to the June index reconstitutions: those

for which the original expectation is reported in June or earlier and the revised expectation is reported in

June or later, as in Figure 3. I include all annual EPS expectations revisions with horizons up to four years.

I also restrict the sample to stocks within a narrow bandwidth around the reconstitution market cap

cutoffs. I use 150 stocks around each cutoff in the baseline analysis (Section 4.3 finds similar results for

alternative bandwidths). Prior to 2007, the rank cutoff was the 1,000th stock. To reduce turnover, since

2007 Russell has used a “banding policy” under which there are two separate cutoffs for stocks starting

18E.g. Schmidt and Fahlenbrach (2017); Appel, Gormley and Keim (2016, 2019, 2021); Heath et al. (2022)
19Sharma (2023) finds switching from the Russell 1000 to 2000 is weakly associated with lower profitability and cash flows

over the next year. Pavlova and Sikorskaya (2023) finds “little evidence” that ∆BMI correlates with future cash flow changes.
20Following Pavlova and Sikorskaya (2023), I winsorize price changes at 1%. Section 4.3 finds similar results at 0%.
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Figure 3: Russell Reconstitution Timeline

May Rank Date June 1

∆Ea,n,t+h|t

∆Eb,n,t+h|t

Illustration of Russell index reconstitution timing. ∆Ea,n,t+h|t is an h-year EPS expectation change for analyst a
and stock n, where the original expectation was reported prior to the May rank date and the revised expectation
is reported after June 1st. ∆Eb,n,t+h|t is an h-year expectation change for analyst b and stock n, where the original
expectation was reported after the May rank date but before the end of June and the revised expectation is reported
after June 1st. ∆Ea,n,t+h|t is included only in the full sample, while ∆Eb,n,t+h|t is included in both the full- and
post-rank samples (discussed in Section 4.3).

in the Russell 1000 and 2000 pre-reconstitution, both of which are mechanical functions of the firm size

distribution. Thus, there is a “band” of market caps including stocks from the Russell 1000 and 2000.

Appendix B.1 explains the Russell methodology I use to calculate these cutoffs. Since Russell ranks stocks

using a proprietary market cap that I lack access to, I use the method of Ben-David, Franzoni and Moussawi

(2019) to approximate this proprietary market cap using standard databases.21 Doing so predicts assignment

to the Russell 1000 and 2000 with high accuracy, as shown in Appendix Table B1. Following previous work,

I use May — not June — market caps to calculate the Russell reconstitution thresholds.22

Xn,t includes stock-level controls used by Pavlova and Sikorskaya (2023): May rank-date log market

cap, one-year monthly average bid-ask percentage spread23, and the banding controls from Appel, Gormley

and Keim (2019) (an indicator for having rank-date market cap in the “band”, an indicator for being in

the Russell 2000 in May, and the interaction of these indicators). Whereas Pavlova and Sikorskaya (2023)

use the proprietary Russell market cap, I calculate market cap from standard databases. These variables

determine Russell 1000/2000 membership. Conditional on these controls, ∆BMIn,t in June is exogenous.

FEt are year fixed effects.

In this restricted sample, there is enough power to quantify the impact of prices on annual EPS ex-

pectations, but not on LTG expectations, which have far less analyst coverage (see Appendix Table B3 for

21See Appendix Table B1 for details.
22E.g. Chang, Hong and Liskovich (2014); Appel, Gormley and Keim (2021); Wei and Young (2021))
23Pavlova and Sikorskaya (2023) note changes in a stock’s liquidity can impact both its returns (by altering the liquidity

premium) and BMI. Thus, they control for Russell’s proprietary float factor and the rolling average bid-ask percentage spread
(to address staleness in the float factor). Lacking access to Russell’s proprietary float factor, I control for the bid-ask spread.
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Table 1: Summary Statistics for Russell Reconstitution Instrument

∆BMIn.t ∆Ea,n,t+4h|t ∆pa,n,t Num Stocks/Year Percent Covered
Num Obs. 164,512.00 164,512.00 164,512.00 20.00 20.00
Mean 0.00 -0.02 0.02 432.45 0.89
Std. Dev 0.04 0.20 0.24 148.33 0.04
Min -0.41 -0.63 -0.60 240.00 0.80
25% -0.01 -0.09 -0.12 260.00 0.87
50% 0.00 0.00 0.00 541.50 0.91
75% 0.01 0.07 0.13 554.00 0.92
Max 0.29 0.51 0.90 562.00 0.94

Summary statistics for observations in the 150-stock window around Russell reconstitution market cap thresholds in
each year for May-to-June changes in benchmarking intensity (∆BMIn,t), quarter-over-quarter revisions in analyst
EPS expectations for forecast horizons of one to four years (∆Ea,n,t+4h|t), inter-announcement percentage price
changes between expectation releases in consecutive quarters (∆pa,n,t), the number of stocks in the window in each
year, and the percentage of all stocks in each window that I observe analyst expectations for. Expectations revisions
and price changes are expressed in absolute terms (i.e. 0.01 is 1%). The time period is 1999-05:2018-09.

details).24 I quantify the impact of prices on LTG expectations in Section 5 using mutual fund flow-induced

trading to instrument for prices.

Table 1 presents summary statistics. There are 164, 512 total analyst-stock-horizon-year observations.

The time period is 1999 to 2018, as this is the period in which I observe Russell index constituents in

May (pre-reconstitution) and June (post-reconstitution). In the average year, I observe analyst expectation

changes for about 90% of the firms in the 150-stock bandwidth around the reconstitution cutoffs.25

4.1 Empirical Results

Table 2 displays the baseline results. Column 1 displays the OLS regression of annual EPS expectation

revisions on contemporaneous price changes, and finds a strong association between these objects, as docu-

mented in previous work (De La O and Myers (2021, 2023)). The first stage regression in column 2 is strong:

Russell reconstitution-driven BMI increases raise prices. The partial F -statistic (11.7) is above the conven-

tional threshold of 10. The reduced-form coefficient in column 3 is also significant: Russell reconstitution-

driven BMI increases raise annual EPS expectation revisions. The second-stage α estimate in column 4

reveals a statistically and economically significant effect of prices on annual EPS expectation revisions: an

24In this restricted sample there are only 3, 758 analyst-stock-year observations for the LTG expectation changes, versus
164, 512 observations for the annual EPS expectation revisions. As Table B3 displays, the two-stage least squares estimate of
α in this LTG expectation sample is α = 2.1 basis points, which is economically significant and in the 95% confidence interval
of the α = 5.5 basis points estimate obtained from the flow-induced trading instrument (see Section 5.1 for details). However,
the 95% confidence interval for this α = 2.1 basis points estimate is wide (−22.7 to 26.9 basis points) due to the small sample.

25Since there is only one market cap cutoff before 2007, there are 300 stocks in the 150-stock window. After the introduction
of the banding policy in 2007, there are two cutoffs, and so 600 stocks in the 150-stock window. See Appendix B.1 for details.
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Table 2: Effect of Prices on Annual EPS Expectations Using ∆BMI as Instrument

(1) (2) (3) (4)
OLS First Stage Reduced Form 2SLS

∆pa,n,t 0.265*** 0.416**
(0.0111) (0.0639, 0.768)

∆BMIn,t 0.573*** 0.238***
(0.168) (0.0736)

Year FE Y Y Y Y
Year-Clustered SE Y Y Y Y
N 164512 164512 164512 164512
F 568.6 11.68 10.48 13.95
R-Squared 0.0825 0.00747 0.00152 0.0556
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1∆BMIn,t + β
′
1Xn,t + FEt + e1,a,n,t

∆Ea,n,t+4h|t = b0 + α∆p̂a,n,t + β
′
2Xn,t + FEt + e2,a,n,t,h,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the June change in BMI
(∆BMIn,t). The reduced form regresses quarterly revisions to annual EPS expectations with horizons of one to four
years (∆Ea,n,t+4h|t) on ∆BMIn,t. The second stage regresses ∆Ea,n,t+4h|t on instrumented price changes (∆p̂a,n,t).
Xn,t includes the log market cap as of the May rank date, the one-year monthly rolling average bid-ask percentage
spread, and the banding controls (an indicator for having rank-date market cap in the band including stocks from
the Russell 1000 and 2000, an indicator for being in the Russell 2000 in May before reconstitution, and the interac-
tion of these indicators). Column 4 reports the 95% confidence interval for the second-stage coefficient using the tF
procedure of Lee et al. (2022). All units are in percentage points (i.e. 1.0 is 1%). The time period is 1999-05:2018-09.

exogenous 1% price increase raises annual EPS expectations by 41 basis points. I report the 95% confidence

interval for the second-stage coefficient using the tF procedure of Lee et al. (2022) to address any concerns

about how instrument strength impacts second-stage inference. Appendix Figure B1 displays first-stage and

reduced-form binscatter plots. Appendix Table B2 displays alternate specifications.

Thus, I reject the null hypothesis of α = 0. Prices impact analyst cash flow expectations. These results

are inconsistent with models featuring homogeneous analyst and investor cash flow expectations and no

feedback from prices to these expectations (as in Section 2.2.1). Yet these results are consistent with models

featuring learning from prices due to dispersed information (as in Section 2.2.2) or price extrapolation (as

in Section 2.2.3). Hence, it’s possible that biases in analyst expectations reflect price variation instead of

driving it. We must seriously consider heterogeneous beliefs and endogenous belief formation mechanisms

when interpreting these expectations.

Moreover, these revisions of fixed-horizon EPS expectations reflect changes in forecast errors, as dis-
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cussed in Section 3. Forecast errors increase (in magnitude, i.e. become more negative) in response to exoge-

nous price increases. This result is consistent with the models in Sections 2.2.2 and 2.2.3. This result is not

consistent with models in which analysts raise cash flow expectations due to exogenous price increases solely

because these increases raise actual future cash flows (e.g. through the relaxation of financial constraints

that enables greater investment (Bernanke and Gertler (1986)) or because a firm’s managers, customers,

or suppliers learn from private information in stock prices and adjust real decisions (Subrahmanyam and

Titman (2001); Edmans, Goldstein and Jiang (2015))).

4.2 Economic Magnitude

Is α = 41 basis points economically large? As a benchmark, assume analysts use the Gordon growth model:

Pt =
Et [Dt+1]

r − g
,

where Et [Dt+1] is expected next-year dividend, and g and r are the growth and discount rates. If analysts

adjust only Et [Dt+1] so their personal valuations rise to match a 1% price rise, they will raise it by 1%.26

Thus, α = 41 basis points is significant and consistent with analysts raising EPS expectations by less than

would fully rationalize price changes (e.g. as in Section 2.2.2 if they view prices as noisy cash-flow signals).

Given the two-stage least squares and OLS estimates (41 and 26 basis points) from Table 2, the propor-

tion of the covariance of prices and analyst expectations this price impact accounts for (2) is 157%. This

proportion exceeds 100% because the two-stage least squares estimate exceeds the OLS estimate, which

likely reflects “measurement error” in the quarterly price changes ∆pa,n,t. For example, if analysts use price

changes only for a subset of days in the quarter (e.g. the one-month price change before the announcement)

to update expectations, then the quarterly price change variance exceeds that of the “true” price change

analysts respond to ∆pTa,n,t: VCX [∆pa,n,t] > VCX
[
∆pTa,n,t

]
.

Thus, to calculate the true covariance proportion this price impact accounts for, one must multiply

(2) by VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t] < 1. I measure this ratio in Section 5.3 using the method of Pancost

and Schaller (2022), which requires one instrument to be applied to multiple outcome variables. I can use

this method in Section 5 where I use the flow induced trading (FIT) instrument to measure the impact

of prices on analyst expectations of different horizons. The restricted sample in the current section (stocks

26Linearizing the Gordon growth model around small percentage changes in price (∆pt) and next year’s expected dividend
(∆dt), and changes in the growth rate (∆g) yields ∆pt ≈ ∆dt + (Pt/Et [Dt+1]) ∆g.
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in a narrow window around the reconstitution thresholds in June) renders horizon-specific α estimates

noisy (see Appendix Table B3), which leads to underestimation of VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t] (Pancost

and Schaller (2022)). Thus, I calculate the Figure 1 covariance decompositions in Section 5.3 using the

FIT instrument. Appendix E reports the decompositions calculated using BMI changes. The covariance

decompositions adjusted for measurement error are “conservative” in that they imply the impact of prices

on analyst expectations is quantitatively less important than the raw covariance decompositions suggest.

4.3 Robustness

Figure 4 summarizes the robustness checks I conduct for the baseline results in Table 2.

Not winsorizing percentage prices changes, instead of at the baseline 1%, yields similar first-stage (0.637

versus the baseline 0.573) and second-stage (α = 37.5 versus the baseline α = 41.6 basis points) estimates.

Winsorizing annual EPS expectation revisions from 1% to 9%, instead of the baseline 5%, yields reduced-

form estimates from 0.184 to 0.351 (all statistically indistinct from the baseline 0.238), and second-stage α

estimates from 32.1 to 61.2 basis points (all statistically indistinct from the baseline 41.6 basis points).

Using alternate bandwidths from 100 to 200 stocks around the cutoffs, instead the baseline 150 stocks,

yields similar first-stage (0.534 to 0.593 versus the baseline 0.573), reduced-form (0.211 to 0.229 versus the

baseline 0.238), and second-stage (α = 38.2 to 40.2 versus the baseline 41.6 basis points) estimates.

One may be concerned that some of the variation in ∆BMIn,t may arise from stocks switching from

Russell Value to Growth indices. At each May rank date, Russell assigns stocks to Value and Growth indices

based on a custom algorithm applied to a proprietary database of analyst forecasts, book-to-price ratio,

and sales growth. Thus, it’s possible that news for stock n before the rank date could impact analyst beliefs

directly, and could impact ∆BMIn,t by moving stock n from the Value to the Growth indices, or vice versa.

This situation threatens exogeneity because I cannot condition on the proprietary information Russell uses

to assign stocks to Value and Growth indices.

I address this concern in two ways. First, lacking Russell’s proprietary valuation metrics, I control for

market-to-book ratio27 and annual sales growth, and obtain similar first-stage (0.594 versus the baseline

0.573), reduced-form (0.238 versus the baseline 0.228), and second-stage (α = 38.4 versus the baseline 41.6

basis points) estimates.

Second, I repeat the analysis using only analyst expectations changes for which the original expectation is

27I construct book equity following the approach of Cohen, Polk and Vuolteenaho (2003).
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Figure 4: Robustness Checks for Using ∆BMI as Instrument

(a) First-Stage Results

(c) Reduced-Form Results

(c) Second-Stage Results

This figure displays results for alternate specifications of two-stage least squares regression (12). In all specifications
Xn,t includes the log market cap as of the May rank date, the one-year monthly rolling average bid-ask percentage
spread, and the banding controls (an indicator for having rank-date market cap in the band including stocks from the
Russell 1000 and 2000, an indicator for being in the Russell 2000 in May before reconstitution, and the interaction
of these indicators). In the “Value Controls” specification, Xn,t also includes market-to-book ratio and annual sales
growth. The solid error bars display 90% confidence intervals, while the dashed error bars display 95% confidence
intervals. Panel (c) reports the 90% and 95% confidence intervals for the second-stage coefficients using the tF
procedure of Lee et al. (2022). Standard errors are clustered by quarter. All units are in percentage points (i.e. 1.0

is 1%). The time period is 1999-05:2018-09.
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reported after the May rank date but before the end of June, as displayed in Figure 3.28 Analyst expectations

changes in this post-rank sample are not exposed to news from before the rank date that may impact

assignment of stocks to the Russell Value and Growth indices, but are still exposed to June reconstitution

price changes. This post-rank sample yields similar first-stage (0.421 versus the baseline 0.573) and reduced-

form (0.257 versus the baseline 0.228) estimates. The second-stage estimate for this post-rank sample is

larger than, but statistically indistinct from, the baseline estimate (α = 61.1 versus the baseline 41.6 basis

points). Although this post-rank sample second-stage estimate is not statistically significant because the

post-rank sample is over ten times smaller than the full sample (11,980 versus 164,512 observations), the

first-stage and reduced-form estimates remain significant.

This specification also addresses the concern that BMI increases raise analyst expectations directly

instead of through prices. If analysts do not respond to prices but expect passive ownership increases to

raise future cash flows due to improved governance or product market outcomes, then these anticipated

improvements should appear in the first expectation reported after the May rank date (e.g. May 30)

because Russell index assignment depends only on information available at the rank date and can be

accurately predicted with public data (see Appendix Table B1). These anticipated improvements should

not impact expectations revisions that occur fully after the rank date (e.g. from June 1 to September 1).

Thus, the impact of BMI increases on post-rank date expectations revisions is inconsistent with analysts

only attending to passive ownership, but is consistent with analysts responding to prices.

5 Evidence from Mutual Fund Flow-Induced Trading

This section provides evidence that prices impact analyst cash flow expectations using my second exogenous

price shock: mutual fund flow-induced trading (FIT).

Stock-level mutual fund trading induced by flows is uninformed: funds tend to scale preexisting holdings

proportionally to ex-ante portfolio weights (Frazzini and Lamont (2008)). For example, a $1 inflow induces

an S&P 500 index fund to mechanically allocate about five additional cents to Apple, since Apple’s weight

in the S&P 500 is about 5%. This predicted mechanical component of the cross-sectional trading induced

by flows is uninformed.

I use the FIT instrument of Lou (2012) (similar to the flow-to-stock instrument of Wardlaw (2020)).29

28I obtain rank dates from Ben-David, Franzoni and Moussawi (2019).
29The FIT instrument uses predicted trading due to all flows; the flow-to-stock instrument uses only extreme outflows.

24



I first calculate the quarterly flow to mutual fund i as

fi,t =
TNAi,t − TNAi,t−1 · (1 + Reti,t)

TNAi,t−1
.

TNAi,t is fund i’s total net assets in quarter t and Reti,t is the fund return from quarter t − 1 to t. The

predicted mechanical trading by fund i in stock n induced by this flow is Shares Heldi,n,t−2 · fi,t. Using the

number of shares held from quarter t− 2 ensures Shares Heldi,n,t−2 uses only information available before

the change in analyst cash flow expectations from quarter t−1 to t. Aggregating across all funds and scaling

by shares outstanding yields30:

FITn,t =
∑

fund i

Shares Heldi,n,t−2

Shares Outstandingn,t−2︸ ︷︷ ︸
≡Si,n,t−2

fi,t. (13)

Sn,i,t−2 is the proportion of all shares of stock n owned by mutual fund i in quarter t− 2.

Table 3 presents summary statistics. There are 121, 553 analyst-stock-year observations in the matched

FIT and LTG expectation sample, spanning 1983 to 2020. There are 3, 396, 550 analyst-stock-horizon-year

observations in the annual EPS expectation sample, spanning 1982 to 2020 (Appendix Table D4 displays

horizon-specific statistics). The availability of I/B/E/S analyst expectations constrains both start points.

I use FITn,t as a cross-sectional instrument for price changes. Hence, if analyst belief shocks νa,n,t are

cross-sectionally uncorrelated with FITn,t for each analyst a and quarter t

E [FITn,tνa,n,t] = 0, ∀a, t, (14)

then the FIT instrument satisfies the unconditional exogeneity condition: E[FITn,tνa,n,t] = 0.

The only source of cross-sectional variation in the FIT instrument is the ex-ante ownership shares

Si,n,t−2. Stocks n for which fund i has greater ownership shares are more exposed to i’s flow in this quarter.

These stocks have larger magnitudes of flow-induced trading, and so more price pressure. Flows fi,t are at

the fund level, and so do not create variation across stocks within a quarter. Heterogeneous ownership shares

create variation across stocks by creating heterogeneous exposures to flows. Thus, a sufficient condition for

30Unlike Lou (2012), but as in Li (2021), I do not multiply the numerator summand by a “partial scaling factor” to reflect
the fact that mutual funds may buy or sell less than one dollar in existing positions per dollar of flow due to liquidity or other
constraints. Yet while Li (2021) uses the lagged total number of shares held by all mutual funds in the denominator, I use the
number of shares outstanding so FITn,t = 0.01 represents the mutual fund sector buying 1% of stock n’s shares.
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Table 3: Summary Statistics for FIT Instrument

∆LTGa,n,t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 121553.00 121553.00 121553.00 131333.00
Mean -0.01 0.03 -0.0001 165.30
Std Dev. 0.04 0.22 0.0039 309.02
Min -0.12 -0.94 -0.3941 1.00
25% -0.02 -0.08 -0.0010 44.00
50% -0.00 0.02 -0.0000 73.00
75% 0.01 0.13 0.0007 132.00
Max 0.10 5.80 0.1845 3712.00

(a) LTG Expectations

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 3396550.00 3396550.00 3396550.00 133902.00
Mean -0.01 0.03 -0.0001 162.61
Std Dev. 0.19 0.24 0.0042 306.68
Min -0.59 -0.99 -0.4536 1.00
25% -0.08 -0.09 -0.0011 43.00
50% 0.00 0.02 -0.0000 72.00
75% 0.07 0.14 0.0008 130.00
Max 0.44 14.05 0.2134 3712.00

(b) Annual EPS Expectations — All Horizons

Summary statistics for quarter-over-quarter changes in LTG expectations ∆LTGa,n,t (Panel (a)) and revisions in
annual EPS expectations for forecast horizons of one to four years ∆Ea,n,t+4h|t (Panel (b)), inter-announcement
percentage price changes (∆pa,n,t), the FIT instrument FITn,t, and the number of stocks held by mutual funds used
to construct the FIT instrument. The first three columns are expressed in absolute terms (i.e. 0.01 is 1%). The time
period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions.

FIT exogeneity (14) is that the ex-ante ownership shares are exogenous across stocks within each quarter t:

E [Si,n,t−2νa,n,t] = 0,∀a, i, t. (15)

The sufficiency of cross-sectionally exogenous ownership shares is a special case of the result that exogenous

shares are sufficient for shift-share instrument exogeneity (Goldsmith-Pinkham, Sorkin and Swift (2020)).

For example, assume there is one fund, analyst, and quarter (so drop subscripts i, a, and t), butN stocks.

The FIT instrument is FITn = Snf (Sn 6= 1 because there are other investors). FITn is exogenous if and

only if the ownership shares are exogenous: 0 = E [FITnνn] = E [Snνn] f , because the flow is constant across

stocks. Appendix C Proposition 4 (the same as Goldsmith-Pinkham, Sorkin and Swift (2020) Proposition
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2) generalizes this argument.

Exogeneity of the ex-ante ownership shares (15) is plausible because the FIT instrument uses ownership

shares from quarter t − 2, which do not contain information analysts use to update expectations from

quarter t − 1 to t. For example, positive news about Apple in quarter t − 2 may impact Si,n,t−2, but will

not be used by analysts to update expectations from quarter t− 1 to t.

This identification strategy does not require flows to be exogenous. Flows may correlate with analyst

belief shocks in the time series: E [fi,tνa,n,t] 6= 0, ∀a, i, n. For example, previous work finds correlations of fund

flows with surveyed beliefs (Greenwood and Shleifer (2014)), past performance (Ippolito (1992); Chevalier

and Ellison (1997); Sirri and Tufano (1998)), past flows (Lou (2012)), and earnings news (Di Maggio

et al. (2023)). None of these time-series correlations undermines the cross-sectional exogeneity of the FIT

instrument. (14) can hold even if E [fi,tνa,n,t] 6= 0,∀a, i, n because flows do create not cross-sectional variation

in FITn,t across stocks within a quarter.

For example, one may be concerned that good news about small stocks in quarter t raises analyst expec-

tations for small stocks and drives flows into small-cap funds. This situation does threaten exogeneity, but

not because flows are endogenous. The issue here is the ownership shares are endogenous ((15) fails) because

both analyst belief shocks and small-cap fund ownership shares depend on a common stock characteristic:

size. Hence, analyst expectations for small stocks are more exposed than those for large stocks to both the

price pressure driven by flows into small-cap funds and the good news shock. These correlated exposures

to different “aggregate shocks” undermine exogeneity.

Section 5.4 explains the solution is to control for time fixed effects interacted with the problematic stock

characteristics (size in this example). Controlling for observed and latent characteristics that explain most

ownership share variation yields similar results. Funds holding few stocks raises similar issues, so I con-

struct the FIT instrument only from mutual funds with many holdings and find similar results. Systematic

deviations from proportional trading also raise similar issues (Berger (2023)), so I construct the instrument

only from passive funds and find similar results.

5.1 Empirical Results

I run the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t. (16)
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For analyst institution a and stock n in quarter t, ∆ya,n,t is either the quarterly LTG expectation change

∆LTGa,n,t, or the h-year EPS expectation revision ∆Ea,n,t+4h|t. ∆pa,n,t is the corresponding price change

between the two quarterly report dates for this analyst institution and stock in quarters t − 1 and t. FEt

are quarter fixed effects.

Table 4 Panel (a) presents the LTG expectations results.31 The OLS regression of LTG expectation

changes on price changes in column 1 finds a strong association between these objects, as previous work

finds (Bordalo et al. (2019, 2022); Nagel and Xu (2021)). The first-stage regression in column 2 is strong

with a partial F -statistic (13.3) over the conventional threshold (10): higher flow-induced trading raises

prices. The reduced-form coefficient in column 3 is also significant: higher flow-induced trading raises LTG

expectations. The second-stage α estimate in column 4 reveals a statistically and economically significant

effect of prices on LTG expectations: an exogenous 1% price increase raises LTG expectations by 5 basis

points. I report the second-stage 95% confidence interval using the tF procedure of Lee et al. (2022) to

address any concerns about how instrument strength impacts second-stage inference.

Panel (b) displays the results for one to four-year horizon annual EPS expectations. The OLS regression

of EPS expectation revisions on price changes in column 1 finds a strong association between these objects,

as previous work finds (De La O and Myers (2021, 2023)). The first-stage regression in column 2 is strong

with a partial F -statistic (16.1) over the conventional threshold (10): higher flow-induced trading raises

prices. The reduced-form coefficient in column 3 is also significant: higher flow-induced trading raises annual

EPS expectation revisions. The second-stage α estimate in column 4 reveals a statistically and economically

significant effect of prices on annual EPS expectation revisions: an exogenous 1% price increase raises annual

EPS expectations by 21 basis points.

This α = 21 basis points estimate is smaller but statistically indistinct from the α = 41 basis points

estimate obtained using the ∆BMI instrument in Table 2. These revisions of fixed-horizon EPS expectations

reflect changes in forecast errors, as discussed in Section 3, and so this α > 0 result is not consistent with

models in which analysts raise their expectations due to exogenous price increases solely because these

increases raise actual future cash flows.

Thus, I reject the null hypothesis of α = 0. There is evidence that prices impact long- and short-

term analyst cash flow expectations. These results are inconsistent with models featuring homogeneous

analyst and investor cash flow expectations and no feedback from prices (as in Section 2.2.1). Yet they are

31Appendix Table D5 displays results with block-bootstrapped (instead of quarterly-clustered) confidence intervals.
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consistent with models featuring learning from prices due to dispersed information (as in Section 2.2.2)

or price extrapolation (as in Section 2.2.3). Hence, it’s possible that biases in analyst expectations reflect

price variation instead of driving it. We must seriously consider heterogeneous beliefs and endogenous belief

formation mechanisms when interpreting these expectations.

Table 4: Effect of Prices on Analyst Expectations Using FIT as Instrument

(1) (2) (3) (4)
Panel (a): LTG Expectation Changes

OLS First Stage Reduced Form 2SLS
∆pa,n,t 0.0438*** 0.0546**

(0.00209) (0.0169, 0.0923)

FITn,t 3.355*** 0.183***
(0.920) (0.0602)

N 121553 121553 121553 121553
F 439.5 13.31 9.242 18.84
R-Squared 0.0399 0.00373 0.000231

Panel (b): Revisions of Annual EPS Expectations
∆pa,n,t 0.279*** 0.206**

(0.0118) (0.0820, 0.330)

FITn,t 3.463*** 0.714***
(0.863) (0.203)

N 3396550 3396550 3396550 3396550
F 562.2 16.09 12.32 21.51
R-Squared 0.108 0.00387 0.000229
Quarter FE Y Y Y Y
Quarter-Clustered SE Y Y Y Y
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading in-
strument (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t) in Panel (a) and quarterly
revisions to annual EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t) in Panel (b) on the instru-
mented price changes (∆p̂a,n,t). FEt are quarter fixed effects. All units are in percentage points (i.e. 1.0 is 1%).
Column 4 reports the 95% confidence interval for the second-stage coefficients using the tF procedure of Lee et al.
(2022). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS ex-
pectation revisions.

Appendix Figure D2 displays first-stage and reduced-form binscatter plots. Figures D3 and D4 display

alternate specifications. Figure D5 displays results for alternate winsorizations.
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Figure 5: Effect of Prices on Term Structure of EPS Expectations

This figure displays the following two-stage least squares regressions results:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆Ea,n,t+4h|t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t,

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading instrument (FITn,t).
The second stage regresses changes quarterly revisions to annual EPS expectations (∆Ea,n,t+4h|t) on the instrumented
price changes (∆p̂a,n,t). I run this regression separately for each horizon h from 1 to 4 years. FEt are quarter fixed
effects. All units are in percentage points (i.e. 1.0 is 1%). The solid error bars represent 90% confidence intervals,
while the dashed error bars display 95% confidence intervals, both of which are computed using the tF procedure of
Lee et al. (2022). Standard errors are clustered by quarter. The time period is 1982-04:2020-12.

5.2 Persistence: In the Term Structure and Over Time

The impact of prices on analyst cash flow expectations is persistent in the term structure and time series.

Figure 5 displays the results of two-stage least squares regression (16) for each annual EPS expectation

horizon. The α estimates for one to three year horizons range from 19.2 to 21.2 basis points, which are

similar to the α = 20.6 basis points pooled estimate from Table 4 Panel (b). The four-year estimate of

α = 40.1 basis points is larger, but is statistically indistinct from the pooled estimate. Appendix Figure D6

displays first-stage and reduced-form results. Thus, this impact appears permanent in the term structure

of expectations: it doesn’t shrink as forecast horizon grows.

Do analysts revise their expectations ex-post once they have enough public information to determine

part of the price change they responded to was driven by noise trading? FITn,t uses fund holdings from the

end of quarter t− 2 to instrument the price change spanning parts of quarters t− 1 and t (as in Figure 2).

Funds report these holdings to the SEC with a 60-day delay, so they become public in quarter t − 1.32 If
32The Thomson Reuters S12 database collects quarterly mutual fund holdings from SEC Forms N-30D, N-Q, and N-CSR,

in addition to voluntary mutual fund disclosures (Zhu (2020)). Form N-Q is filed within 60 days of the end of the first and
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analysts learn of these filings with a delay (e.g. due to inattention), they would not be able to construct

FITn,t in real time. If analysts later learn of these filings, construct FITn,t, realize part of the price change

they responded to was noise-driven, and revise their expectations to remove this noise, then the impact of

FITn,t on analyst expectations will revert over time.

To test for these ex-post revisions, I regress cash flow expectations changes on lagged FIT values:

∆ya,n,t =
L∑

s=0

βsFITn,t−s + FEt + FEn + ea,n,t.

∆ya,n,t is the LTG expectation change or annual EPS expectation revision. L = 0, . . . , 4 is the max lag.

Figure 6 displays the sum of the coefficients on the lagged FIT instruments for each maximum lag

L = 0, . . . , 4:
∑L

s=0 βs. The vertical line at the one quarter lag highlights that the first “true lag” is actually

quarter t−2, since FITn,t−1 overlaps with ∆ya,n,t (as shown in Figure 2). At horizons of up to one year, I find

no evidence that analysts revise their LTG or one to four year EPS expectations to remove their responses

to noise-drive price changes. Thus, the impact of prices on analyst cash flow expectations is persistent.

Appendix Figure D7 presents some evidence that this impact reverts at longer horizons (twelve to

sixteen quarters) once the FIT instrument’s price impact starts to revert (Lou (2012) finds it reverts at

similar horizons of eight to sixteen quarters). If prices impact analyst expectations, then analysts should

lower their expectations due to these ex-post price reversions. I find some evidence of this prediction, but

lack power at longer lags for a sharp statistical test.

5.3 Economic Magnitude

Are the price impacts in Table 4 economically large? Under the Gordon growth model, if analysts adjust

only long-run growth rates so their personal valuations rise to match a 1% price rise, they will raise g

by Et [Dt+1] /Pt%, which is about 4 basis points on average for the aggregate market.33 Thus, if LTG

expectations proxy for analyst beliefs about g, α = 5 basis points is consistent with analysts revising LTG

expectations to fully rationalize price changes.

As in Section 4.2, if analysts adjust only Et [Dt+1] to match a 1% price rise, they will raise it by 1%.

third quarters of the fund’s fiscal year (Securities and Commission (2023b)). Form N-CSR is filed within 10 days of the fund’s
“transmission to stockholders of any annual or semi-annual report that is required to be transmitted to stockholders pursuant
to Rule 30e-1 under the [Investment Company Act of 1940]” (Securities and Commission (2023a)). According to the Act, these
annual and semi-annual reports are made within 60 days of the fund’s fiscal half-year end and fiscal year-end, i.e. the second
and fourth quarters of the fund’s fiscal year (Office (2023)).

33Linearizing the Gordon growth model around small percentage changes in price (∆pt) and next year’s expected dividend
(∆dt), and changes in the growth rate (∆g) yields ∆pt ≈ ∆dt + (Pt/Et [Dt+1]) ∆g.
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Figure 6: Lack of Immediate Reversal in Impact of FIT on Analyst Cash Flow Expectations

This figure displays the coefficient sums
∑L

s=0 βs, L = 1, . . . , 4, from the following regression:

∆ya,n,t =

L∑
s=0

βsFITn,t−s + FEt + FEn + ea,n,t.

∆ya,n,t is either the quarter-over-quarter change in LTG expectations for analyst institution a for stock n in quarter
t ∆LTGa,n,t, or the quarterly revision to annual EPS expectations with horizons of one to four years ∆Ea,n,t+4h|t.
FEt and FEn are quarter and stock fixed effects. Dark and light shaded areas represent 90% and 95% confidence
intervals, respectively. Standard errors are clustered by quarter and stock. All units are in percentage points (i.e.
1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS
expectation revisions.
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Thus, α = 21 basis points is significant and consistent with analysts raising EPS expectations by less than

would fully rationalize price changes (e.g. as in Section 2.2.2 if they view prices as noisy cash-flow signals).

Given the two-stage least squares and OLS estimates (5 or 21 and 4 or 28 basis points) from Table 4, the

proportion of the covariance of prices and analyst expectations this price impact accounts for (2) is 125%

and 75% for the LTG and annual EPS expectations. As in Section 4.2, these are likely overestimates due to

“measurement error”: quarterly price changes ∆pa,n,t may not be the “true” price changes ∆pTa,n,t analysts

respond to (e.g. analysts may respond only to the price change one month before the announcement). Thus,

the true covariance proportion is

αVCX
[
∆pTa,n,t

]
CovCX (∆pa,n,t,∆ya,n,t)

=
Two Stage Least Squares Estimate of α

OLS Coefficient in Regression of ∆ya,n,t on ∆pa,n,t
·
VCX

[
∆pTa,n,t

]
VCX [∆pa,n,t]︸ ︷︷ ︸

≤1

. (17)

I use the method of Pancost and Schaller (2022) to measure VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t]. Let αh and

αOLS
h be the two-stage least squares and OLS estimates for horizon h (LTG or one to four years). If αOLS

h has

omitted variable bias (due to common information or sentiment shocks impacting both analyst expectations

directly and prices via investor expectations) and measurement error, it is a linear function of αh:

αOLS
h =

VCX
[
∆pTa,n,t

]
VCX [∆pa,n,t]

αh +OV Bh,

Pancost and Schaller (2022) demonstrate that in an OLS regression of αOLS
h on αh

αOLS
h = a+ θαh + eh, (18)

θ consistently estimates VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t].34 αh/α

OLS
h · θ recovers corrected proportion (17).35

Figure 1 displays the estimated corrected covariance proportion (17) for the LTG and pooled set of

annual EPS expectations in quarterly block-bootstrapped samples. The impact of prices on analyst cash flow

expectations explains 61.0% and 39.7% of the cross-sectional covariance of prices with LTG and annual EPS

expectations. Common information or sentiment shocks to analysts and investors explain the remainder.

34In this regression, I constrain θ so that θ ≤ 1 and the corrected covariance proportion (17) does not exceed 1 for any
horizon (which is a tighter constraint). θ can be arbitrarily small. The point estimates for the corrected covariance proportion
are similar using unconstrained regressions, but the upper end of the confidence interval is wider (see Appendix Table E8).
Estimation error in αh attenuates θ, creating underestimation of VCX

[
∆pTa,n,t

]
/VCX [∆pa,n,t] (Pancost and Schaller (2022)).

35If ∆pa,n,t has non-classical measurement error, then θ does not consistently estimate VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t], but

αh/α
OLS
h · θ still recovers corrected covariance proportion (17), as discussed in Appendix E.1.
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Appendix E provides estimation details, estimates of θ, and covariance decompositions for all horizons.

5.4 Threat to Exogeneity: Common Characteristics

The main threat to FIT exogeneity is that both ex-ante ownership shares and analyst belief shocks depend on

common stock characteristics. In this case, (15) fails: the ownership shares are not exogenous. As discussed

above, FIT exogeneity is not threatened by flows chasing returns and stock characteristics, or correlating

with surveyed beliefs and past flows because ownership share exogeneity is sufficient for FIT exogeneity.

If ownership shares Si,n,t−2 and analyst belief shocks νa,n,t depend on common stock characteristics,

they correlate across stocks within a quarter. For example, small-cap funds have larger ownership shares

in small stocks than in large stocks. At the same time, a small-firm tax cut this quarter raises analysts

expectations more for small stocks than large stocks. Thus, stocks with higher small-cap fund ownership

shares have higher analyst belief shocks, which violates (15).

To be concrete, consider this factor structure in ownership shares and analyst belief shocks36:

Si,n,t−2 = c
′
iXn + S̃i,n,t−2 (19)

νa,n,t = X
′
nηt + ν̃a,n,t. (20)

In (19), fund i’s ownership shares Si,n,t−2 depend cross-sectionally on stock characteristics Xn (small-cap

funds have larger ownership shares in small firms). In (20), the impact of aggregate shocks ηt (the tax news)

on analyst beliefs depends on characteristics (size). S̃i,n,t−2 and ν̃a,n,t are uncorrelated with other objects.

In this case, the ownership shares are not cross-sectionally exogenous ((15) fails):

∀a, i, t : E [Si,n,t−2νa,n,t] = c
′
iE
[
XnX

′
n

]
ηt 6= 0. (21)

Since the ownership shares are not cross-sectionally exogenous, neither is FITn,t ((14) fails):

FITn,t =
∑
i

fi,tSi,n,t−2 =

(∑
i

cifi,t

)′
︸ ︷︷ ︸

≡β′t

Xn +
∑
i

S̃i,n,t−2fi,t︸ ︷︷ ︸
≡ ˜FITn,t

(22)

∀a, t : E [FITn,tνa,n,t] = β
′
tE
[
XnX

′
n

]
ηt 6= 0.

36A more general specification νa,n,t = λ
′
a,nηt + ν̃a,n,t,λa,n = ΓaXn + λ̃a,n does not impact any of the arguments.
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Simply put, cross-sectional FIT variation comes from heterogeneous flow exposures (i.e. heterogeneous

ownership shares) that correlate with other shock exposures: small stocks are more exposed to small-cap

fund flows and the tax news.

The solution is to control for these common stock characteristics interacted with quarter indicators.

Doing so removes the FIT variation driven by these characteristics (β
′
tXn). From (22), using FITn,t while

linearly controlling for characteristics interacted with quarter indicators is the same as constructing the

FIT instrument from residual ownership shares S̃i,n,t−2: ˜FITn,t =
∑

i S̃i,n,t−2fi,t. ˜FITn,t is exogenous since

the residual ownership shares are.37

Which characteristics should one control for? While I cannot identify which characteristics correlate with

analyst belief shocks (in general one cannot test an exogeneity condition), I can identify those that explain

significant cross-sectional variation in ownership shares. If controlling for the most important determinants

of ownership shares has little impact on estimates of α, that suggests this common characteristics concern

does not prove serious empirically.

Section 5.4.1 controls for stock characteristics associated with the investment styles of funds that drive

most FIT instrument variation. Since ownership shares and analyst belief shocks may also depend on unob-

served characteristics, Section 5.4.2 controls for latent characteristics from a latent factor model that explain

most cross-sectional ownership share variation. Funds holding few stocks raises similar issues: ownership

shares depend on a specific stock characteristic: firm identity. Section 5.4.3 constructs the FIT instrument

from only funds with many holdings. Systematic deviations from proportional trading raise similar issues

(Berger (2023)). Section 5.4.4 constructs the FIT instrument from only passive funds, which generally

adhere to proportional trading.

As summarized in Figure 7, these alternate specifications yield α estimates similar to the baseline

estimates in Table 4. Appendix Figures D8 and D9 present the first-stage and reduced-form results.

5.4.1 Controlling for Observed Stock Characteristics

One of the most important determinants of within-fund cross-sectional ownership share variation is invest-

ment style. Small-cap funds have larger ownership shares in small stocks than in large stocks. Value funds

have larger ownership shares in value stocks than in growth stocks. Thus, characteristics associated with

fund styles explain much ownership share variation, and so may threaten share exogeneity. I use CRSP

37 ˜FITn,t is exogenous (E
[

˜FITn,tνa,n,t
]

= 0, ∀a, t) since S̃i,n,t−2 are exogenous (E
[
S̃i,n,t−2νa,n,t

]
= 0, ∀a, i, t).

35



Figure 7: Robustness Checks for Using FIT Instrument

(a) LTG Expectations

(b) Annual EPS Expectations

This figure displays the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + β
′

1Xn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + β
′

2Xn,t + FEt + e2,a,n,t.

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading in-
strument (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t in Panel (a)) and quarterly
revisions to annual EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t in Panel (b)) on the instru-
mented price changes (∆p̂a,n,t). Xn,t includes quarter indicators interacted with either observed (in the “Observed
Characteristics” specifications) or latent (in the “Latent Characteristics” specifications) stock characteristics. The
observed stock characteristics include: book-to-market ratio, log market equity, dividend-to-book equity ratio, prof-
itability, investment, and market beta. For the “Observed Characteristics” specifications , each subsequent column
adds an additional control variable (e.g. the right-most column represents the results of the regression with all six
control variables). The time period for the “Observed Characteristics” and “Latent Characteristics” specifications is
1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions. For the
“Minimum Number of Mutual Fund Holdings” specifications, each column constructs FITn,t only from mutual funds
that have at leastM holdings, whereM is labeled on the x-axis. The time period for the “Minimum Number of Mutual
Fund Holdings” specifications is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS
expectation revisions. The “Index Funds Only” specifications construct FITn,t from only mutual funds identified as
index funds by one of the two criteria listed on the x-axis. The time period for the “Index Funds Only” specifications
is 1984-09:2020-12. FEt are quarter fixed effects. The solid error bars represent 90% confidence intervals, while the
dashed error bars display 95% confidence intervals, both of which are computed using the tF procedure of Lee et al.
(2022). Standard errors are clustered by quarter. All units are in percentage points (i.e. 1.0 is 1%).36



Table 5: Rotemberg Weights as Percentage of Total for Most Important Fund Styles

Style LTG Style Annual EPS Expectation
Domestic Equity Growth 82.74 Domestic Equity Small Cap 38.08
Domestic Equity Small Cap 27.23 Domestic Equity Growth 35.97
Domestic Equity Income 3.98 Domestic Equity Mid Cap 10.20
Domestic Equity Growth & Income 2.37 Domestic Equity Micro Cap 4.08

Total Rotemberg weights (expressed as percentages of the total weight) for top five most important fund styles for
both the LTG expectations (∆LTGa,n,t) and annual EPS expectations (∆Ea,n,t+4h|t) samples.

style codes to identify fund styles.38

Which fund styles are most important to control for? As a shift-share instrument, the FIT instrument

is equivalent to using ownership shares (interacted with quarter indicators) as cross-sectional instruments

for price changes in an over-identified system with a specific GMM weighting matrix (Goldsmith-Pinkham,

Sorkin and Swift (2020)). Implicitly, some funds, and so some styles, receive more weight in this estimation.

I calculate these “Rotemberg weights” from Goldsmith-Pinkham, Sorkin and Swift (2020) for each fund-

quarter, and then aggregate to the style level (see Appendix D.1 for details). Violation of share exogeneity

(15) for higher Rotemberg weight styles biases the α estimates more. Thus, characteristics associated with

high-weight styles are the most important to control for.

As displayed in Table 5, the most important styles for both the LTG and annual EPS expectations

samples are cap-based and growth/income-based. The top five styles account for 116% and 88% of the total

Rotemberg weight for these samples (a few styles have slightly negative weights, as detailed in Appendix

D.1). These styles drive most of the FIT instrument variation. For example, since the most important style

for the LTG expectations sample is growth, much of the the FIT instrument variation comes from comparing

stocks that growth funds have large ownership shares in (growth stocks) to stocks these funds have small

ownership shares in (value stocks). Analyst belief shocks for growth and value stocks having heterogeneous

exposures to other aggregate shocks may violate share exogeneity. Since cap-based fund ownership shares

correlate with size and growth/income-based fund ownership shares correlate with valuation metrics, these

stock characteristics may threaten share exogeneity and should be controlled for.

I control for log market equity as a size measure, book-to-market and dividend-to-book ratios as valu-

ation metrics, and profitability, investment, and market beta as popular characteristics that may correlate

with ownership shares.39 These six characteristics explain 46% of within fund-quarter ownership share

38CRSP style codes are defined in this document: https://wrds-www.wharton.upenn.edu/documents/1303/MFDB_Guide.pdf.
39When using change in analyst expectations ∆ya,n,t, I use characteristics from quarter t−2, which is the same quarter the

ownership shares Si,n,t−2 are taken from to construct FITn,t. Profitability is the ratio of operating profits over book equity.
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variation (see Appendix D.2 for details).

As Figure 7 displays, controlling for these characteristics interacted with quarter indicators does not

affect the α estimates. Sequentially adding controls, the LTG expectations changes estimates in Panel (a)

range from α = 4.8 to 5.7 basis points, which are close to the baseline α = 5.5 basis points estimate from

Table 4 Panel (a). The annual EPS expectations revisions estimates in Panel (b) range from α = 20.6 to

24.0 basis points, which are close to the baseline α = 20.6 basis points estimate from Table 4 Panel (b).

5.4.2 Controlling for Latent Stock Characteristics

While controlling for characteristics associated with the most important fund styles does not impact the

α estimates, ownership shares and analyst belief shocks may both depend on unobserved characteristics.

To address this concern, I fit a latent factor model to estimate the latent characteristics that explain

cross-sectional ownership share variation:

Si,n,t = c
′
i,tXn,t + FEi,t + FEn,t + S̃i,n,t. (23)

I fit latent factor model (23) to the fund × stock panel in each quarter using regularized singular value

decomposition (Funk (2006)) (details in Appendix D.3).40 The stock-quarter fixed effect and the first seven

characteristics explain 75% of within fund-quarter ownership share variation (details in Appendix D.2).

As Figure 7 displays, controlling for these eight latent characteristics interacted with quarter indicators

does not affect the α estimates. The LTG expectations changes estimates in Panel (a) range from α = 5.1

to 5.7 basis points, which are similar to the baseline α = 5.5 basis points estimate in Table 4 Panel (a). The

annual EPS expectations revisions estimates in Panel (b) range from α = 20.3 to 20.9 basis points, which

are similar to the baseline α = 20.6 basis points estimate in Table 4 Panel (b). Appendix Figures D10, D11,

and D12 display the first-stage, reduced-form, and second-stage results for all numbers of latent factors.

5.4.3 Requiring Minimum Number of Holdings

Funds holding few stocks may violate share exogeneity. In the extreme case where each fund holds one of N

total stocks, any stock-specific shocks (e.g. earnings surprises) will violate share exogeneity. For example,

Investment is log annual growth rate of assets. Market beta is constructed from 60-month rolling regressions using returns
in excess of one-month Treasury bill rates. I winsorize profitability, investment, and market beta at the 2.5th and 97.5th
percentiles. Since dividends and book equity are non-negative, I winsorize them at the 97.5th percentile.

40Given the sparsity of the data (most funds do not hold most stocks), I use L2 (i.e. ridge) regularization to estimate the
factor model more efficiently. Regularization biases the factor and loading estimates toward zero to reduce their variance.
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only analyst expectations for Apple are exposed to flows into the “Apple fund” and Apple’s earnings surprise.

In this example, ownership shares and analyst belief shocks depend on a specific characteristic: firm

identify. Xn in (19) and (20) is an N -dimensional vector of stock indicators.: Xn = [1j=n]Nj=1. Since both

ownership shares and analyst belief shocks depend on a common characteristic, share exogeneity (15) is

violated, as in (21). The previous characteristic controls do not remove variation due to firm identity: one

would have to control for stock-quarter fixed effects, which would absorb all FIT instrument variation.

This fund concentration concern is not serious empirically. In my sample the average (median) number of

stocks held by each fund in each quarter is over 160 (70) (see Table 3). Moreover, strong fund concentration

would create a weak factor structure in ownership shares: spanning them would require N (the number

of stocks) characteristics. Yet I find a strong factor structure: six observed characteristics explain 46% of

ownership share variation (in Section 5.4.1); eight latent characteristics explain 75% (in Section 5.4.2).

To further address this concern, I construct alternate FITn,t versions using only funds with at least

M ∈ [15, 200] holdings in quarter t. As Figure 7 displays, doing so does not affect the α estimates. The

LTG expectations changes estimates in Panel (a) range from α = 5.0 to 6.9 basis points, which are similar

to the baseline α = 5.5 basis points estimate in Table 4 Panel (a). The annual EPS expectations revisions

estimates in Panel (b) range from α = 16.8 to 20.4 basis points, which are similar to the baseline α = 20.6

basis points estimate in Table 4 Panel (b). Power decreases as the minimum number of holdings rises

because excluding some funds reduces the FIT instrument’s variation.

5.4.4 Using only Passive Funds

Berger (2023) finds systematic deviations from the proportional trading assumption (that funds scale hold-

ings proportionally in response to flows) can create selection bias. Per Berger (2023), while the proportional

trading assumption may normally hold (as shown by Lou (2012)), it may not hold when funds face extreme

outflows (e.g. due to liquidity costs). In the context of the Edmans, Goldstein and Jiang (2012)MFFLOW

instrument, Berger (2023) argues these systematic deviations occur for stocks with certain characteristics

because this instrument uses only the predicted trading driven by extreme outflows.41 Since the Lou (2012)

FIT instrument I use includes the predicted trading driven by all flows (not just extreme outflows), these

systematic deviations are less likely in my setting.

Still, I take this concern seriously, because systematic deviations from proportional trading would create

41Berger (2023) raises similar concerns for the flow-to-stock instrument from Wardlaw (2020).
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a dependence of ownership shares on stock characteristics, which threatens share exogeneity (15).42 To

address this concern, I exploit the observation from Berger (2023) that the proportional trading assumption

generally holds for passive funds, which maintain portfolios close to their benchmarks. Even if passive funds

do not perfectly adhere to the proportional trading assumption, they deviate much less from it than active

funds.43 Thus, if selection bias drives the baseline results in Table 4, then constructing the FIT instrument

from only passive funds should yield much weaker results. Yet doing so yields similar results, which suggests

this selection bias concern is not serious empirically.

I use two definitions of “passive funds”. First, following Berger (2023) I classify all funds with the CRSP

index fund flag44 or “target date” in their names as passive. As Figure 7 displays, constructing the FIT

instrument from only these passive funds yields α estimates of 4.6 and 20.1 basis points for the LTG and

annual EPS expectations samples, which are similar to the baseline 5.5 and 20.6 basis points estimates from

Table 4. While these point estimates are similar, they are not statistically significant because the CRSP

index fund flag is only available since 1998 and the first named “target date” funds appear in my sample in

2005, so the sample sizes are much smaller.45

To increase power, I classify funds as passive based on the proportion of their investment universes they

hold. Similar to Koijen and Yogo (2019), I define the investment universe of a fund as the set of all stocks it

has ever held in the last five years. A fund is passive if it holds at least M% of the stocks in its universe.46

For M = 50%, this rule successfully classifies 84% of fund-quarter observations as passive or not based on

the CRSP index fund flag and “target date” name definition, with a false positive rate of only 8%. As Figure

7 displays, constructing the FIT instrument from only funds holding least 50% of their universes yields α

estimates of 5.6 and 23.7 basis points for the LTG and annual EPS expectations samples, which are similar

to the baseline 5.5 and 20.6 basis points estimates. Using thresholds above 50% improves classification

42Formally, let predicted mechanical trading by fund i in stock n due to flow fi,t be Shares Heldi,n,t−2 · fi,t. Aggregating
across mutual funds yields FITn,t from (13). Let the actual trading be ψi,n,t · fi,t, and define FITψn,t =

∑
fund i S

ψ
i,n,tfi,t,

where Sψi,n,t = ψi,n,t/Shares Outstandingn,t. If actual trading systematically deviates from proportional trading depend-
ing on stock characteristics Xn,t (Shares Heldi,n,t−2 = ψi,n,t + c

′
Xn,t), then deviations of the ownership shares the

FIT instrument uses (Si,n,t) from the shares that “should” be used (Sψi,n,t) depend on stock characteristics: Si,n,t =(
Sψi,n,t · Shares Outstandingn,t + c

′
Xn,t

)
/Shares Outstandingn,t−2.

43Heath et al. (2022) note that passive ETFs do not hold all of the stocks in their benchmarks, but rather hold a sample
that optimally trades off tracking error versus transactions costs. Still, Heath et al. (2022) find that passive ETFs hold the
vast majority of stocks in their benchmarks (97%, 89%, and 63% of stocks in the top, middle, and bottom liquidity terciles).

44Specifically, I include only funds with the “D” flag, which stands for “pure index fund”.
45For the LTG and annual EPS expectations samples, using the FIT instrument constructed from funds with the CRSP

index fund flag and target date funds yields 80, 870 (down from 121, 553) and 2, 392, 080 (down from 3, 396, 550) observations.
46Specifically, I apply this classification at the fund-quarter level.
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accuracy and yields similar results, at the expense of power, as Appendix Figure D15 displays.47 Appendix

Figures D13 and D14 display the first-stage and reduced-form results.

6 Conclusion

Prices impact analyst cash flow expectations. Using instruments based on Russell index reconstitution and

mutual fund flow-induced trading, I provide the first evidence that analysts raise their long- and short-

term cash flow expectations in response to exogenous price increases unrelated to fundamentals. This price

impact explains approximately half the covariance between prices and analyst cash flow expectations.

This price impact has important implications for how asset pricing and macro-finance researchers inter-

pret analyst expectations. My results are inconsistent with typical models used to interpret analyst cash

flow expectations, which feature homogeneous analyst and investor cash flow expectations, and no feedback

from prices to these expectations. Yet these results are consistent with models that relax either of these

two assumptions. On one hand, there are models that allow investor and analyst cash flow expectations to

differ, such as models with dispersed information in which analysts learn from prices that reflect investors’

private information. In these models, at least some investors’ cash flow expectations do not depend on

prices, but then analysts have different expectations from these investors. On the other hand, there are

models that allow common investor and analyst cash flow expectations to depend on prices, such as models

of price extrapolation. In these models, exogenous price increases today raise expectations of future prices,

and agents mechanically raise cash flow expectations to justify these higher price expectations.

Compared to typical models, these latter two model classes present different interpretations of correla-

tions of analyst expectations with prices, future returns, and forecast errors. In models in previous work,

biases in analyst cash flow expectations are shared by investors and so distort prices. In these alternative

models, analyst expectations may only reflect price distortions from other variables (e.g. noise shocks, dis-

count rates, biased price expectations). My results imply these alternative interpretations should be taken

seriously when working with analyst cash flow expectations, and so motivate further study of heterogeneous

beliefs and endogenous belief formation mechanisms.

Moreover, these results raise important questions about how investors and analysts form beliefs and the

extent to which analyst beliefs proxy for investor beliefs. Are analyst cash flow expectations a good proxy

47Classification accuracy based on the CRSP index fund flag and “target date” name definition of “passive” for the 50% of
Universe definition is 84% with a false positive rate of 8%. Accuracy for the 60% of Universe definition is 87% with a false
positive rate of 3%. Accuracy for the 70% of Universe definition is 88% with a false positive rate of 1%.
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for the beliefs of a large, price-relevant group of investors? What belief formation mechanism creates this

price impact on cash flow expectations? Do large groups of investors share this mechanism with analysts?

Do investors have biased cash flows expectations? Are these biased expectations important drivers of asset

prices? Given the impact of prices on analyst cash flow expectations, these expectations alone are likely

insufficient to answer these questions. Instead, direct measures of investor beliefs or empirical strategies

that account for belief heterogeneity will likely prove necessary.
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A Proofs for Section 2

A.1 Proofs for Model from Section 2.2.1

The investor chooses quantity demanded to maximize expected utility under his subjective beliefs (which

are the same as those of the analyst, hence the A superscripts in EA
t and VA

t ):

QI
1 = argmaxQEA

1

[
− exp

[
−A

(
W1 +Q

(
D̃2 − P̃1

))]]
=

1

A

EA
1

[
D̃2

]
− P̃1

VA
1

[
D̃2

]
VA

1

[
D̃2

]
= σ2

ε .

By market clearing, the quantity demanded equals the total number of shares: QI
1 = 1. The market clearing

price is:

P̃1 = EA
1

[
D̃2

]
−AVA

1

[
D̃2

]
(24)

= D̄ + s̃−Aσ2
ε .

Proof of Proposition 1. Prices correlate positively with analyst cash flow expectations:

Cov
(
P̃1,EA

1

[
D̃2

])
= σ2

s > 0.

The period-one analyst expectation and price negatively predict the period-two return:

Period-Two Return = D̃2 − P1 = −s̃+Aσ2
ε + ε̃

Cov
(
EA
[
D̃2

]
, D̃2 − P1

)
= Cov

(
P1, D̃2 − P1

)
= −σ2

s < 0.

1



The period-one analyst expectation and price negatively predict the period-two forecast error:

Period-Two Forecast Error = D̃2 − EA
1

[
D̃2

]
= −s̃+ ε̃

Cov
(
EA

1

[
D̃2

]
, D̃2 − EA

1

[
D̃2

])
= Cov

(
P1, D̃2 − EA

1

[
D̃2

])
= −σ2

s < 0.

A.2 Proofs for Model from Section 2.2.2

The quantity demanded by the CARA investor is

QI
1 = argmaxQEI

1

[
− exp

[
−A

(
W1 +Q

(
D̃2 − P̃1

))]]
=

1

A

EI
1

[
D̃2

]
− P̃1

VI
1

[
D̃2

]
VI

1

[
D̃2

]
= σ2

ε .

The quantity demanded by the noise trader is:

QN
1 = z̃ ∼ N

(
0, σ2

z

)
.

Market clearing (1 = QI
1 +QN

1 ) implies the following price:

P̃1 = EI
1

[
D̃2

]
− (1− z̃)AVI

1

[
D̃2

]
(25)

= D̄ + η̃ − (1− z̃)Aσ2
ε . (26)

The analyst posterior expectation is:

EA
1

[
D̃2

]
= D̄ +

ω̂

τ + ω̂

(
P̃1 − D̄ +Aσ2

ε

)
= D̄ +

ω̂

τ + ω̂
η̃ +

ω̂

τ + ω̂
Aσ2

ε z̃. (27)

Proof of Proposition 2. Prices correlate positively with analyst cash flow expectations:

Cov
(
P̃1,EA

1

[
D̃2

])
=

1

τ

ω̂ + τ ω̂ω−1

ω̂ + τ
> 0,

2



where ω−1 = A2σ4
εσ

2
z . Note that the analyst expectation covaries more strongly with price than the CARA

investor’s expectation does:

Cov
(
P̃1,EI

1

[
D̃2

])
=

1

τ
<

1

τ

ω̂ + τ ω̂ω−1

ω̂ + τ
,

since ω̂−1 < ω−1 as σ̂z < σz. If the analyst has the right belief about the distribution of the noise shock z̃

(i.e. σ̂z = σz so ω̂ = ω), then both of these covariances are equal.

The period-one analyst expectation and price negatively predict the period-two return:

Period-Two Return = D̃2 − P̃1 = −Aσ2
ε z̃ +Aσ2

ε + ε̃

Cov
(
EA
[
D̃2

]
, D̃2 − P̃1

)
= − ω̂

τ + ω̂
· 1

ω
< 0

Cov
(
P̃1, D̃2 − P̃1

)
= − 1

ω
< 0.

Note that both of these statements hold even if the analyst has the right belief about the distribution of

the noise shock z̃ (i.e. σ̂z = σz so ω̂ = ω).

The period-one analyst expectation and price negatively predict the period-two forecast error:

Period-Two Forecast Error = D̃2 − EA
[
D̃2

]
=

τ

τ + ω̂
η̃ − ω̂

τ + ω̂
Aσ2

ε z̃ + ε̃

Cov
(
EA

1

[
D̃2

]
, D̃2 − EA

1

[
D̃2

])
=

ω̂

(τ + ω̂)2

(
1− ω̂ω−1

)
< 0

Cov
(
P̃1, D̃2 − EA

1

[
D̃2

])
=

1

τ + ω̂

(
1− ω̂ω−1

)
< 0,

where both inequalities follow from ω̂−1 < ω−1. If the analyst has the right belief about the distribution

of the noise shock z̃ (i.e. σ̂z = σz so ω̂ = ω and the analyst does not overreact to price), then both of

these covariances equal zero because the analyst would be perfectly-Bayesian and use all public information

optimally. Note that the investor forecast error is just ε̃, which is unpredictable.

3



A.3 Proofs for Model from Section 2.2.3

The investor with CARA utility has quantities demanded in periods one and two of:

QI
1 = argmaxQEA

1

[
− exp

[
−A

(
W1 +Q

(
P̃2 − P̃1

))]]
=

1

A

EA
1

[
P̃2

]
− P̃1

VA
1

[
P̃2

]
QI

2 = argmaxQEA
2

[
− exp

[
−A

(
W2 +Q

(
D̃3 − P̃2

))]]
=

1

A

EA
2

[
D̃3

]
− P̃2

VA
2

[
D̃3

]
VA

2

[
D̃3

]
= σ2

ε .

There is an analyst with the same subjective beliefs as the CARA investor (hence the A superscripts in EA
t

and VA
t ).

The noise trader has demand in periods t = 1 and 2 of:

QN
t = z̃t ∼ N

(
0, σ2

z

)
.

Market clearing in each period (1 = QI
t +QN

t ) implies the following prices:

P̃2 = EA
2

[
D̃3

]
− (1− z̃2)AVA

2

[
D̃3

]
(28)

= D̄ − (1− z̃2)Aσ2
ε (29)

P̃1 = EA
1

[
P̃2

]
− (1− z̃1)AVA

1

[
P̃2

]
(30)

=
1

1− φ
[
D̄ −Aσ2

ε − (1− z̃1)A3σ4
εσ

2
z

]
, (31)

where (31) follows by substituting (7) into (30) and rearranging.

The CARA investor forms cash flow expectations in period one to rationalize his biased price expecta-

tions. That is, this investor has expectations in period one about D̃3 that are consistent with both the law

of iterated expectations and his biased expectation about the period-two price. From (28) and the law of

iterated expectations, we have the period-one expectation of P̃2 in terms of the period-one expectation of

4



D̃3:

EA
1

[
P̃2

]
= EA

1

[
EA

2

[
D̃3

]
− (1− z̃2)AVA

2

[
D̃3

]]
= EA

1

[
D̃3

]
−Aσ2

ε .

Setting this expression equal to (7) and plugging in (29) and (31) yields

EA
1

[
D̃3

]
−Aσ2

ε = D̄ −Aσ2
ε + φP̃1

↔ EA
1

[
D̃3

]
= D̄ + φP̃1 (32)

=
1

1− φ
D̄ − φ

1− φ
[
Aσ2

ε + (1− z̃1)A3σ4
εσ

2
z

]
.

Note that without extrapolation (φ = 0), this investor has rational expectations about D̃3 in period one:

EA
1

[
D̃3

]
= D̄. However, with extrapolation (φ > 0), the period-one noise trader demand shock distorts

cash flow expectations.

Proof of Proposition 3. Prices correlate positively with analyst cash flow expectations:

Cov
(
P̃1,EA

1

[
D̃3

])
=

φ

(1− φ)2

(
A3σ4

εσ
3
z

)2
> 0.

The period-one analyst expectation and price negatively predict the period-two return:

Period-Two Return = P̃2 − P̃1 =
−φ

1− φ
[
D̄ −Aσ2

ε

]
+

[
z̃2Aσ

2
ε +

1

1− φ
(1− z̃1)A3σ4

εσ
2
z

]
Cov

(
EA

1

[
D̃3

]
, P̃2 − P̃1

)
= − φ

(1− φ)2

(
A3σ4

εσ
3
z

)2
< 0

Cov
(
P̃1, P̃2 − P̃1

)
= − 1

(1− φ)2

(
A3σ4

εσ
3
z

)2
< 0.

The period-one analyst expectation and price negatively predict the period-three forecast error:

Period-Three Forecast Error = D̃3 − EA
1

[
D̃3

]
=
−φ

1− φ
D̄ +

φ

1− φ
[
Aσ2

ε + (1− z̃1)A3σ4
εσ

2
z

]
+ ε̃

Cov
(
EA

1

[
D̃3

]
, D̃3 − EA

1

[
D̃3

])
= − φ2

(1− φ)2

(
A3σ4

εσ
3
z

)2
< 0

Cov
(
P̃1, D̃3 − EA

1

[
D̃3

])
= − φ

(1− φ)2

(
A3σ4

εσ
3
z

)2
< 0.
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B Supplements to Section 4

B.1 Description of Russell Banding Methodology Starting in 2007

Prior to 2007, firms with market capitalizations on the May rank date that fell between ranks 1 and 1000

were assigned to the Russell 1000, and those with market caps ranked between 1001 and 3000 were assigned

to the Russell 2000.

To reduce turnover, since 2007 FTSE Russell has used a “banding policy” under which there are two

separate cutoffs for stocks in the Russell 1000 and 2000 in the previous year, both of which are based on a

mechanical function of the firm size distribution in the year. Under this policy:

• Stocks in the Russell 2000 in the previous year are assigned to the Russell 1000 if they’re rank date

market cap ranks fall between 1 and 1000− c1.

• Stocks in the Russell 1000 in the previous year are assigned to the Russell 2000 if they’re rank date

market cap ranks fall between 1000 + c2 and 3000.

To calculate c1 and c2 Russell first computes the cumulative market cap of the largest 1000 stocks (i.e. those

with ranks 1 through 1000). Let C(N) represent the cumulative market cap of the largest N stocks. c1 is

calculated such that C(1000−c1) = 0.95 ·C(1000). c2 is calculated such that C(1000+c2) = 1.05 ·C(1000).

That is, the band of stocks between ranks 1000 − c1 and 1000 + c2 constitutes a 5% band around the

cumulative market cap of the largest 1000 stocks.

Thus, even after the introduction of the banding policy, assignment to the Russell 1000 or 2000 is still

based on a mechanical rule. After the introduction of the banding policy, this mechanical rule changes each

year with the distribution of firm sizes.
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B.2 Supplemental Empirical Results
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Figure B1: Binscatter for First Stage and Reduced Form for ∆BMI Instrument
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(b) Reduced-Form

This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1∆BMIn,t + β
′
1Xn,t + FEt + e1,a,n,t

∆Ea,n,t+4h|t = b0 + b1∆BMIn,t + β
′
2Xn,t + FEt + e2,a,n,t,h,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the June change in BMI
(∆BMIn,t). The reduced form regresses quarterly revisions to annual EPS expectations with horizons of one to
four years (∆Ea,n,t+4h|t) on ∆BMIn,t. Xn,t includes the log market cap as of the May rank date, the one-year
monthly rolling average bid-ask percentage spread, and the banding controls (an indicator for having rank-date mar-
ket cap in the band including stocks from the Russell 1000 and 2000, an indicator for being in the Russell 2000 in
May before reconstitution, and the interaction of these indicators). All units are in percentage points (i.e. 1.0 is 1%).
The time period is 1999-05:2018-09.
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Table B3: Horizon-Specific Effects of Prices on Cash Flow Expectations Using ∆BMI as Instrument

OLS First Stage Reduced Form 2SLS
Panel (a): LTG Expectations
∆pa,n,t 0.0580*** 0.0210

(0.00637) (-0.227, 0.269)

∆BMIn,t 0.389** 0.00817
(0.142) (0.0250)

N 4489 4489 4489 4489
F 82.77 7.487 0.107 0.124
R-Squared 0.0646 0.00416 0.0000352
Panel (b): 1 Year EPS Expectations
∆pa,n,t 0.279*** 0.501**

(0.0139) (0.0419, 0.960)

∆BMIn,t 0.565*** 0.283***
(0.157) (0.0810)

N 79053 79053 79053 79053
F 402.2 13.05 12.22 10.89
R-Squared 0.0820 0.00749 0.00197
Panel (b): 2 Year EPS Expectations
∆pa,n,t 0.264*** 0.388**

(0.00987) (0.0639, 0.712)

∆BMIn,t 0.577*** 0.224**
(0.167) (0.0829)

N 64986 64986 64986 64986
F 715.0 11.88 7.280 14.19
R-Squared 0.0928 0.00756 0.00152
Panel (c): 3 Year EPS Expectations
∆pa,n,t 0.212*** 0.136

(0.00976) (-0.466, 0.738)

∆BMIn,t 0.536** 0.0728
(0.212) (0.0837)

N 16715 16715 16715 16715
F 469.8 6.420 0.757 1.158
R-Squared 0.0602 0.00614 0.000152
Panel (d): 4 Year EPS Expectations
∆pa,n,t 0.258*** 0.197

(0.0144) (., .)

∆BMIn,t 0.643* 0.127
(0.352) (0.154)

N 3758 3758 3758 3758
F 321.8 3.330 0.677 1.017
R-Squared 0.0713 0.00754 0.000315
Quarter FE Y Y Y Y
Quarter-Clustered SE Y Y Y Y
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1∆BMIn,t + β
′
1Xn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + β
′
2Xn,t + FEt + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the June change in BMI
(∆BMIn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t in Panel (a)) or quarterly re-
visions to annual EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t in Panels (b) through (d)) on
the instrumented price changes (∆p̂a,n,t). Xn,t includes the log market cap as of the May rank date, the one-year
monthly rolling average bid-ask percentage spread, and the banding controls (an indicator for having rank-date mar-
ket cap in the band including stocks from the Russell 1000 and 2000, an indicator for being in the Russell 2000 in
May before reconstitution, and the interaction of these indicators). Column 4 reports the 95% confidence interval for
the second-stage coefficient using the tF procedure of Lee et al. (2022). If the first-stage is not significant at the 5%
significance level (as for the four-year EPS expectations in Panel (d)), this procedure assigns the whole real line as
the confidence interval for the second-stage coefficient. All units are in percentage points (i.e. 1.0 is 1%). The time
period is 1999-05:2018-09. 11



C Shift-Share Instrument Proofs

This appendix formalizes the argument that exogenous mutual fund ownership shares are sufficient for the

FIT instrument to be cross-sectionally exogenous. In particular, Proposition 4 proves the consistency of the

two-stage least squares estimator for α that uses FITn,t as an instrument for price under the assumption of

exogenous ownership shares. The arguments in this appendix are the same as those in Goldsmith-Pinkham,

Sorkin and Swift (2020); I include them here only for completeness.

In particular, I fix an analyst (so I drop the analyst a subscript). In this case, we have the following

system of equations in the cross section of stocks:

∆pn,t = MFITn,t +X
′
n,tδ1 + εn,t

∆yn,t = α∆pn,t +X
′
n,tδ2 + νn,t.

Empirically I pool across all analysts to increase power.

Appendix C.1 describes the sampling procedure to formalize the idea that the source of variation is the

cross section of equities.

Appendix C.2 proves the consistency of the two-stage least squares estimator for α that uses FITn,t as

an instrument for price under the assumption of exogenous ownership shares.

C.1 Sampling Procedure

Let N be the number of stocks, I be the number of mutual funds, and T + 2 be the number of quarters.

Label the quarters t = −1, 0, 1, . . . , T. Let D be the dimension of Xn,t (i.e. the number of controls). Let

L = N · T .

12



Define

F t = (f1,t, . . . , fI,t) ∈ RI

F = (F1, . . . , FT ) ∈ R(I·T )×1

Sn,t = (S1,n,t, . . . , SI,n,t) ∈ RI

Sn =



S
′
n,−1 0 · · · 0

0 S
′
n,0

...
. . .

0 S
′
n,T−2


∈ RT×(I·T )

S = (S1, . . . ,SN ) ∈ RL×(I·T )

∆yn = (∆yn,1, . . . ,∆yn,T ) ∈ RT

∆y = (∆y1, . . . ,∆yN ) ∈ RL

∆pn = (∆pn,1, . . . ,∆pn,T ) ∈ RT

∆p = (∆p1, . . . ,∆pN ) ∈ RL

νn = (νn,1, . . . , νn,T ) ∈ RT

ν = (ν1, . . . ,νN ) ∈ RL

Xn = (Xn,1, . . . ,Xn,T ) ∈ RD×T

X =
(
X
′
1, . . . ,X

′
N

)
∈ RL×D

FITn = (FITn,1, . . . ,FITn,T ) ∈ RT

FIT = (FIT1, . . . ,FITN ) ∈ RL.

Note that

FIT = SF . (33)

Let

PX = X
(
X
′
X
)−1

X
′
,

be the projection matrix with respect to the stacked matrix of controls X and

MX = IL −PX ,

13



be the annihilator matrix, where IL is the L× L identity matrix.

I assume the data

{∆yn,∆pn,Sn,Xn}Nn=1

are drawn i.i.d. across stocks n. I do not assume the data are i.i.d. within n.

I view the vector of flows F as fixed. That is, flows are viewed as constants, not random variables. This

sampling procedure draws i.i.d. samples of {∆yn,∆pn,Sn,Xn} across stocks n. The flows fi,t are at the

fund i and quarter t level and do not vary across stocks n. Thus, I view flows as fixed. This treatment of

the flow vector F as fixed is analogous to the treatment of the matrix of national average industry growth

rates as fixed in Goldsmith-Pinkham, Sorkin and Swift (2020).

C.2 Proof of Consistency

The estimator for α using the FIT instrument in the following two-stage least squares regression

∆pn,t = MFITn,t +X
′
n,tδ1 + e1,n,t

∆yn,t = α∆p̂n,t +X
′
n,tδ2 + e2,n,t,

is

α̂FIT =
(MXFIT)

′
(MX∆y)

(MXFIT)
′
(MX∆p)

=
FIT

′
MX∆y

FIT′MX∆p
.

Define a GMM estimator for α that uses the ownership shares Si,n,t−2 as cross-sectional instruments for

∆pn,t (i.e. use [Si,n,s · 1(s = t− 2)]I,T−2
i=1,s=−1 as instruments for ∆pn,t) and weighting matrix W as

α̂GMM =
∆p

′
MXSWS

′
MX∆y

∆p′MXSWS′MX∆p
.

The following lemma (which is the same as Proposition 1 from Goldsmith-Pinkham, Sorkin and Swift

(2020)) demonstrates that α̂FIT = α̂GMM when W = FF
′
. That is, using the FIT instrument as an

instrument for price to estimate α is equivalent to using the ownership shares themselves interacted with

quarter indicators as instruments for price in an over identified system with a particular GMM weighting

matrix.

Lemma 1 (Equivalence of FIT and GMM Estimators). α̂FIT = α̂GMM if W = FF
′
.

14



Proof.

α̂FIT =
FIT

′
MX∆y

FIT′MX∆p

=
F
′
S
′
MX∆y

F
′
S′MX∆p

=
∆p

′
MXSFF

′
S
′
MX∆y

∆p′MXSFF
′
S′MX∆p

= α̂GMM

The first equality follows by the definition of α̂FIT. The second follows from (33). The third follows since

∆p
′
MXSF is a scalar. The last equality follows by the definition of α̂GMM when setting W = FF

′
.

Thus, in order to prove the consistency of α̂FIT, it suffices to prove the consistency of α̂GMM.

Proving the consistency of α̂GMM requires the following three assumptions.

Assumption 1. 0 < E
[
FIT2

n,t

]
<∞, ∀t.

Assumption 2 (Relevance). In

∆pn,t = MFITn,t +X
′
n,tδ1 + εn,t

where E [εn,t | FITn,t,Xn,t] = 0, we have M 6= 0 and |M | <∞.

Assumption 3 (Strict Exogeneity). E [Si,n,t−2νn,t |Xn,t] = 0, ∀i, t, such that fi,t 6= 0.

The following proposition proves that α̂GMM is a consistent estimator for α under Assumptions 1, 2,

and 3.

Proposition 4 (Consistency). Given Assumptions 1, 2, and 3, plimN→∞α̂GMM − α = 0 if W = FF
′
.

Proof. This proposition follows from standard GMM consistency results. In particular, the proof below

follows from the proof of Theorem 8.1 in Wooldridge (2010).

Rewrite α̂GMM as

α̂GMM =
∆p

′
MXSFF

′
S
′
MX∆y

∆p′MXSFF
′
S′MX∆p

= α+

(
1
N

∑N
n=1 S

′
n∆p⊥n

)′
W
(

1
N

∑N
n=1 S

′
nν
⊥
n

)
(

1
N

∑N
n=1 S

′
n∆p⊥n

)′
W
(

1
N

∑N
n=1 S

′
n∆p⊥n

) , (34)
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where

∆p⊥ = MX∆p =
(

∆p⊥1 , . . . ,∆p
⊥
N

)
ν⊥ = MXν =

(
ν⊥1 , . . . ,ν

⊥
N

)
.

By the law of large numbers and continuous mapping theorem, the denominator of the second term in

(34) converges to

plimN→∞

(
1

N

N∑
n=1

S
′
n∆p⊥n

)′
W

(
1

N

N∑
n=1

S
′
n∆p⊥n

)
= E

[
S
′
n∆p⊥n

]′
WE

[
S
′
n∆p⊥n

]
= E

[
S
′
n∆p⊥n

]′
FF

′
E
[
S
′
n∆p⊥n

]
=

(
E
[
S
′
n∆p⊥n

]′
F

)2

=

(
E
[
F
′
S
′
n∆p⊥n

]′)2

=

(
E
[
FIT

′
n∆p⊥n

]′)2

6= 0. (35)

The second equality follows since W = FF
′
. The third equality follows since F

′E
[
S
′
n∆p⊥n

]
is a scalar. The

fourth equality follows since flows are viewed as fixed, as described in the sampling procedure in Appendix

C.1. The fifth equality follows from (33). The last line follows from Assumption 2 since

0 6= M = E
[
FIT

′
nFITn

]−1
E
[
FIT

′
n∆p⊥n

]
,

and E
[
FIT

′
nFITn

]
6= 0 by Assumption 1.

By the law of large numbers and continuous mapping theorem, the numerator of the second term in

16



(34) converges to

plimN→∞

(
1

N

N∑
n=1

S
′
n∆p⊥n

)′
W

(
1

N

N∑
n=1

S
′
nν
⊥
n

)
= E

[
S
′
n∆p⊥n

]′
WE

[
S
′
nν
⊥
n

]
= E

[
S
′
n∆p⊥n

]′
FF

′
E
[
S
′
nν
⊥
n

]
= E

[
S
′
n∆p⊥n

]′
F · 0

= 0. (36)

The third equality follows since

F
′
E
[
S
′
nν
⊥
n

]
= F

′
E
[
E
[
S
′
nν
⊥
n |Xn,t

]]
(37)

=

I∑
i=1

T∑
t=1

fi,tE
[
E
[
Si,n,t−2ν

⊥
n,t |Xn,t

]]
= 0. (38)

(37) follows by the law of iterated expectations. (38) follows from Assumption 3, under which48

E [Si,n,t−2νn,t |Xn,t] = 0,∀i, t s.t. fi,t 6= 0.

Thus, by (35), (36), and the continuous mapping theorem, the second term in (34) converges to zero:

plimN→∞

(
1
N

∑N
n=1 S

′
n∆p⊥n

)′
W
(

1
N

∑N
n=1 S

′
nν
⊥
n

)
(

1
N

∑N
n=1 S

′
n∆p⊥n

)′
W
(

1
N

∑N
n=1 S

′
n∆p⊥n

) = 0.

Therefore, plimN→∞α̂GMM − α = 0.

48Note that

E
[
Si,n,t−2ν

⊥
n,t |Xn,t

]
= E [Si,n,t−2 (νn,t − E [νn,t |Xn,t]) |Xn,t] = E [Si,n,t−2νn,t |Xn,t] ,

because E [νn,t |Xn,t] = 0,∀t, under the assumption that the controls Xn,t are exogenous.
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D Supplementary Empirical Results for FIT Instrument

Table D4: Summary Statistics for FIT Instrument

∆LTGa,n,t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 121553.00 121553.00 121553.00 131333.00
Mean -0.01 0.03 -0.0001 165.30
Std Dev. 0.04 0.22 0.0039 309.02
Min -0.12 -0.94 -0.3941 1.00
25% -0.02 -0.08 -0.0010 44.00
50% -0.00 0.02 -0.0000 73.00
75% 0.01 0.13 0.0007 132.00
Max 0.10 5.80 0.1845 3712.00

(a) LTG Expectations

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 3396550.00 3396550.00 3396550.00 133902.00
Mean -0.01 0.03 -0.0001 162.61
Std Dev. 0.19 0.24 0.0042 306.68
Min -0.59 -0.99 -0.4536 1.00
25% -0.08 -0.09 -0.0011 43.00
50% 0.00 0.02 -0.0000 72.00
75% 0.07 0.14 0.0008 130.00
Max 0.44 14.05 0.2134 3712.00

(b) Annual EPS Expectations — All Horizons

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 1791810.00 1791810.00 1791810.00 133783.00
Mean -0.03 0.03 -0.0000 162.73
Std Dev. 0.19 0.23 0.0041 306.79
Min -0.55 -0.99 -0.4536 1.00
25% -0.09 -0.09 -0.0010 43.00
50% -0.00 0.02 0.0000 72.00
75% 0.07 0.14 0.0008 130.00
Max 0.37 9.99 0.2134 3712.00

(c) Annual EPS Expectations — 1 Year

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 1294912.00 1294912.00 1294912.00 133778.00
Mean 0.00 0.03 -0.0001 162.74
Std Dev. 0.18 0.24 0.0043 306.79
Min -0.44 -0.99 -0.4536 1.00
25% -0.07 -0.09 -0.0012 43.00
50% 0.01 0.02 -0.0000 72.00
75% 0.08 0.14 0.0009 130.00
Max 0.40 14.05 0.2028 3712.00

(d) Annual EPS Expectations — 2 Year

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 247140.00 247140.00 247140.00 126829.00
Mean -0.00 0.02 -0.0003 164.69
Std Dev. 0.17 0.23 0.0040 308.29
Min -0.45 -0.97 -0.1185 1.00
25% -0.06 -0.09 -0.0016 44.00
50% 0.00 0.02 -0.0002 73.00
75% 0.06 0.13 0.0009 132.00
Max 0.39 12.94 0.1845 3712.00

(e) Annual EPS Expectations — 3 Year

∆Ea,n,t+4h|t ∆pa,n,t FITn,t Num Stocks/(Fund, Quarter)

Num Obs. 60438.00 60438.00 60438.00 110952.00
Mean -0.02 0.03 -0.0002 173.56
Std Dev. 0.21 0.25 0.0039 317.66
Min -0.59 -0.96 -0.0813 1.00
25% -0.08 -0.09 -0.0015 46.00
50% -0.00 0.02 -0.0001 76.00
75% 0.06 0.14 0.0009 141.00
Max 0.44 7.21 0.1845 3712.00

(f) Annual EPS Expectations — 4 Year

Summary statistics for quarter-over-quarter changes in LTG expectations ∆LTGa,n,t (Panel (a)) and revisions in
annual EPS expectations for forecast horizons of one to four years ∆Ea,n,t+4h|t (Panels (b) through (d)), inter-
announcement percentage price changes (∆pa,n,t), the FIT instrument FITn,t, and the number of stocks held by
mutual funds used to construct the FIT instrument. The first three columns are expressed in absolute terms (i.e.
0.01 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS
expectation revisions.
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Table D5: Effect of Prices on Analyst Expectations Using FIT as Instrument — Quarterly Block-
Bootstrapped Confidence Intervals

OLS First Stage Reduced Form 2SLS

LTG 0.044 3.576 0.177 0.053
(0.040, 0.048) (1.848, 5.546) (0.088, 0.339) (0.030, 0.075)

Pooled Annual EPS Expectations 0.282 3.560 0.701 0.214
(0.259, 0.302) (2.054, 5.741) (0.390, 1.276) (0.115, 0.289)

1-Year EPS Expectations 0.291 3.469 0.709 0.220
(0.268, 0.313) (2.048, 5.651) (0.397, 1.290) (0.122, 0.315)

2-Year EPS Expectations 0.278 3.588 0.644 0.202
(0.254, 0.299) (2.006, 5.866) (0.357, 1.254) (0.106, 0.270)

3-Year EPS Expectations 0.241 4.052 0.736 0.183
(0.217, 0.263) (2.371, 6.040) (0.341, 1.176) (0.100, 0.287)

4-Year EPS Expectations 0.226 4.143 1.537 0.373
(0.193, 0.251) (2.406, 6.008) (0.748, 2.041) (0.159, 0.667)

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instru-
ment (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t) or quarterly revisions to annual
EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t) on the instrumented price changes (∆p̂a,n,t).
FEt are quarter fixed effects. All units are in percentage points (i.e. 1.0 is 1%). Point estimates are the medians
of quarterly block-bootstrapped sampling distributions with 100 samples. 95% confidence intervals from the block-
bootstrapped sampling distributions are reported in parentheses. The time period is 1983-01:2020-12 for the LTG
expectations and 1982-04:2020-12 for the annual EPS expectation revisions.
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Figure D2: Binscatter Plots for First Stage and Reduced Form
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(b) First-Stage (LTG)
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(c) Reduced-Form (Annual EPS Expectation
Revisions)
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(d) Reduced-Form (LTG)

This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + b1FITn,t + FEt + e2,a,n,t,

The first stage (Panels (a) and (b)) regresses percent price changes between analyst reports (∆pa,n,t) on the flow-
induced trading instrument (FITn,t) for both the quarterly revisions to annual EPS expectations with horizons of
one to four years (∆Ea,n,t+4h|t) sample in Panel (a) and the changes in LTG expectations (∆LTGa,n,t) sample in
Panel (b). The reduced form (Panels (c) and (d)) regresses quarterly revisions to annual EPS expectations with
horizons of one to four years (∆Ea,n,t+4h|t) in Panel (c) and changes in LTG expectations (∆LTGa,n,t) in Panel (d)
on the flow-induced trading instrument (FITn,t). FEt are quarter fixed effects. All units are in percentage points
(i.e. 1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual
EPS expectation revisions.

20



Figure D3: Alternative FIT Specifications — Annual EPS Expectations

This figure displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,a,n,t

∆Ea,n,t+4h|t = b0 + b1FITn,t +Xn,t + e2,a,n,t,h.

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading instrument (FITn,t).
The reduced form regresses quarterly revisions to annual EPS expectations with horizons of one to four years
(∆Ea,n,t+4h|t) on the flow-induced trading instrument (FITn,t). Xn,t potentially includes stock and quarter fixed
effects. The solid error bars display 90% confidence intervals, while the dashed error bars display 95% confidence
intervals. The 90% and 95% confidence intervals for the second-stage coefficients using the tF procedure of Lee et al.
(2022). Standard errors are clustered by quarter. All units are in percentage points (i.e. 1.0 is 1%). The time period
is 1982-04:2020-12.
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Figure D4: Alternative FIT Specifications — LTG Expectations

This figure displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,a,n,t

∆LTGa,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instru-
ment (FITn,t). The second stage regresses quarterly changes in LTG expectations (∆LTGa,n,t) on the instrumented
price changes (∆p̂a,n,t). Xn,t potentially includes stock and quarter fixed effects. The solid error bars display 90%
confidence intervals, while the dashed error bars display 95% confidence intervals. The 90% and 95% confidence
intervals for the second-stage coefficients using the tF procedure of Lee et al. (2022). Standard errors are clustered
by quarter. All units are in percentage points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12.22



Figure D5: Effect of Prices on Analyst Expectations Using FIT as Instrument — Alternative Winsorizations

(a) LTG Expectations (First Stage) (b) Annual EPS Expectations (First Stage)

(c) LTG Expectations (Reduced Form) (d) Annual EPS Expectations (Reduced Form)

(e) LTG Expectations (2SLS) (f) Annual EPS Expectations (2SLS)

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instru-
ment (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t) or quarterly revisions to annual
EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t) on the instrumented price changes (∆p̂a,n,t). FEt

are quarter fixed effects. Panels (a), (c), and (e) display results for the LTG expectations sample. Panels (b), (d), and
(f) display results for the annual EPS expectations sample. The solid error bars represent 90% confidence intervals,
while the dashed error bars display 95% confidence intervals. Panels (e) and (f) report confidence intervals using the
tF procedure of Lee et al. (2022). Standard errors are clustered by quarter. All units are in percentage points (i.e.
1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS
expectations.
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Figure D6: First-Stage and Reduced-Form Regressions for Annual EPS Expectations Revisions

(a) First-Stage Results

(b) Reduced-Form Results

This figure displays the following first-stage and reduced-form regression results:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆Ea,n,t+4h|t = b0 + b1FITn,t + FEt + e2,a,n,t.

The first stage (in Panel (a)) regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading in-
strument (FITn,t). The reduced form (in Panel (b)) regresses quarterly revisions to annual EPS expectations with
horizons of one to four years (∆Ea,n,t+4h|t) on the flow-induced trading instrument (FITn,t). I run this regression for
each horizon h from 1 to 4 years. FEt are quarter fixed effects. Standard errors are clustered by quarter. All units
are in percentage points (i.e. 1.0 is 1%). The solid error bars represent 90% confidence intervals, while the dashed
error bars display 95% confidence intervals. The time period is 1982-04:2020-12.
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Figure D7: Reversal in Impact of FIT on Analyst Cash Flow Expectations at Longer Horizons

This figure displays the coefficient sums
∑L

s=0 βs, L = 1, . . . , 4, from the following regression:

∆ya,n,t =

L∑
s=0

βsFITn,t−s + FEt + FEn + ea,n,t.

∆ya,n,t is either the quarter-over-quarter change in LTG expectations for analyst institution a for stock n in quarter
t ∆LTGa,n,t, or the quarterly revisions to annual EPS expectations with horizons of one to four years ∆Ea,n,t+4h|t.
FEt and FEn are quarter and stock fixed effects. For EPS expectation horizon h years, I use a maximum lag of
4h quarters. For the LTG expectations I use a maximum lag of 16 quarters. Dark and light shaded areas represent
90% and 95% confidence intervals, respectively. Standard errors are clustered by quarter and stock. All units are in
percentage points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12
for the annual EPS expectation revisions.
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Figure D8: Robustness Checks for Using FIT Instrument — First Stage

(a) LTG Expectations

(b) Annual EPS Expectations

This figure displays the following first-stage regression:

∆pa,n,t = a0 + a1FITn,t + β
′

1Xn,t + FEt + e1,a,n,t,

which regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instrument
(FITn,t) for the LTG expectations sample (∆LTGa,n,t in Panel (a)) and the quarterly revisions to annual EPS ex-
pectations with horizons of one to four years sample (∆Ea,n,t+4h|t in Panel (b)). Xn,t includes quarter indicators
interacted with either observed (in the “Observed Characteristics” specifications) or latent (in the “Latent Char-
acteristics” specifications) stock characteristics. For the “Observed Characteristics” specifications, each subsequent
column adds a control variable (e.g. the right-most column represents the results of the regression with all six con-
trol variables). The time period for the “Observed Characteristics” and “Latent Characteristics” specifications is
1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions. For the
“Minimum Number of Mutual Fund Holdings” specifications, each column constructs FITn,t only from mutual funds
that have at least M holdings, where M is labeled on the x-axis. The time period for the “Minimum Number of Mu-
tual Fund Holdings” specifications is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual
EPS expectation revisions. The “Index Funds Only” specifications construct FITn,t from only mutual funds identified
as index funds by one of the two criteria listed on the x-axis. The time period for the “Index Funds Only” speci-
fications is 1984-09:2020-12. FEt are quarter fixed effects. The solid error bars represent 90% confidence intervals,
while the dashed error bars display 95% confidence intervals. Standard errors are clustered by quarter. All units are
in percentage points (i.e. 1.0 is 1%).
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Figure D9: Robustness Checks for Using FIT Instrument — Reduced Form

(a) LTG Expectations

(b) Annual EPS Expectations

This figure displays the following reduced-form regression:

∆ya,n,t = a0 + a1FITn,t + β
′

1Xn,t + FEt + e1,a,n,t,

which regresses changes in LTG expectations (∆LTGa,n,t in Panel (a)) and quarterly revisions to annual EPS expec-
tations with horizons of one to four years (∆Ea,n,t+4h|t in Panel (b)) on the flow-induced trading instrument (FITn,t).
Xn,t includes quarter indicators interacted with either observed (in the “Observed Characteristics” specifications)
or latent (in the “Latent Characteristics” specifications) stock characteristics. For the “Observed Characteristics”
specifications, each subsequent column adds a control variable (e.g. the right-most column represents the results
of the regression with all six control variables). The time period for the “Observed Characteristics” and “Latent
Characteristics” specifications is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS
expectation revisions. For the “Minimum Number of Mutual Fund Holdings” specifications, each column constructs
FITn,t only from mutual funds that have at least M holdings, where M is labeled on the x-axis. The time period
for the “Minimum Number of Mutual Fund Holdings” specifications is 1983-01:2020-12 for the LTG expectations and
1982-04:2020-12 for the annual EPS expectation revisions. The “Index Funds Only” specifications construct FITn,t

from only mutual funds identified as index funds by one of the two criteria listed on the x-axis. The time period for
the “Index Funds Only” specifications is 1984-09:2020-12. FEt are quarter fixed effects. The solid error bars represent
90% confidence intervals, while the dashed error bars display 95% confidence intervals. Standard errors are clustered
by quarter. All units are in percentage points (i.e. 1.0 is 1%).
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Figure D10: FIT First Stage Regressions — Latent Characteristics Controls

(a) Changes in LTG Expectations

(b) Revisions in Annual EPS Expectations

This figure displays the following regression:

∆pa,n,t = a0 + a1FITn,t + β
′
1Xn,t + FEt + e1,a,n,t,

which regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instrument
(FITn,t). Panels (a) and (b) displays the regression results for the LTG expectations (∆LTGa,n,t) and annual EPS
expectations (∆Ea,n,t+4h|t) samples, respectively. Xn,t includes quarter indicators interacted with the latent stock-
quarter fixed effect and up to seven latent stock characteristics estimated from the latent factor model described in
Section 5.4.2. FEt are quarter fixed effects. The solid error bars represent 90% confidence intervals, while the dashed
error bars display 95% confidence intervals. Standard errors are clustered by quarter. All units are in percentage
points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the
annual EPS expectation revisions.
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Figure D11: FIT Reduced-Form Regressions — Latent Characteristics Controls

(a) Changes in LTG Expectations

(b) Revisions in Annual EPS Expectations

This figure displays the following regression:

∆ya,n,t = a0 + a1FITn,t + β
′
Xn,t + FEt + e1,a,n,t,

which regresses changes in LTG expectations (∆ya,n,t = ∆LTGa,n,t) in Panel (a) and quarterly revisions in an-
nual EPS expectations (∆ya.n,t = ∆Ea,n,t+4h|t) in Panel (b) on the flow-induced trading instrument (FITn,t). Xn,t

includes quarter indicators interacted with the latent stock-quarter fixed effect and up to seven latent stock charac-
teristics estimated from the latent factor model described in Section 5.4.2. FEt are quarter fixed effects. The solid
error bars represent 90% confidence intervals, while the dashed error bars display 95% confidence intervals. Standard
errors are clustered by quarter. All units are in percentage points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12
for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions.
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Figure D12: FIT Second-Stage Regressions — Latent Characteristics Controls

(a) LTG Expectations

(b) Annual EPS Expectations

This figure displays the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + β
′

1Xn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + b1FITn,t + β
′

2Xn,t + FEt + e2,a,n,t.

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading in-
strument (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t) in Panel (a) and quarterly
revisions to annual EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t) in Panel (b) on the instru-
mented price changes (∆p̂a,n,t). Xn,t includes quarter indicators interacted with the latent stock-quarter fixed effect
and up to seven latent stock characteristics estimated from the latent factor model described in Section 5.4.2. FEt

are quarter fixed effects. The solid error bars represent 90% confidence intervals, while the dashed error bars display
95% confidence intervals, both of which are computed using the tF procedure of Lee et al. (2022). Standard errors
are clustered by quarter. All units are in percentage points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12 for
the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions.
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Figure D13: FIT First-Stage Regressions — Passive Funds Only

(a) LTG Expectations

(b) Annual EPS Expectations

This table displays results for the following regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t,

which regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instrument
(FITn,t) for the LTG expectations (∆LTGa,n,t) sample in Panel (a) and the quarterly revisions to annual EPS
expectations with horizons of one to four years (∆Ea,n,t+4h|t) sample in Panel (b). FEt are quarter fixed effects.
For each passive fund classification on the x-axis, both the results using the FIT instrument constructed from only
passive funds and the results using the standard FIT instrument in the matched sample are displayed (i.e. stock n will
be dropped from the sample if FITn,t cannot be constructed using only passive funds because no passive funds hold
stock n). The solid error bars represent 90% confidence intervals, while the dashed error bars display 95% confidence
intervals, both of which are computed using the tF procedure of Lee et al. (2022). Standard errors are clustered by
quarter. All units are in percentage points (i.e. 1.0 is 1%). The time period is 1984-09:2020-12. Classification accuracy
based on the CRSP index fund flag and “target date” name definition of “passive” for the 50% of Universe definition
is 84% with a false positive rate of 8%. Accuracy for the 60% of Universe definition is 87% with a false positive rate
of 3%. Accuracy for the 70% of Universe definition is 88% with a false positive rate of 1%.
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Figure D14: FIT Reduced-Form Regressions — Passive Funds Only

(a) LTG Expectations

(b) Annual EPS Expectations

This table displays results for the following regression:

∆ya,n,t = a0 + a1FITn,t + FEt + e1,a,n,t,

of percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading instrument (FITn,t) for the
LTG expectations (∆LTGa,n,t) in Panel (a) and the quarterly revisions to annual EPS expectations with horizons
of one to four years (∆Ea,n,t+4h|t) in Panel (b). FEt are quarter fixed effects. For each passive fund classification
on the x-axis, both the results using the FIT instrument constructed from only passive funds and the results using
the standard FIT instrument in the matched sample are displayed (i.e. stock n will be dropped from the sample if
FITn,t cannot be constructed using only passive funds because no passive funds hold stock n). The solid error bars
represent 90% confidence intervals, while the dashed error bars display 95% confidence intervals. All units are in
percentage points (i.e. 1.0 is 1%). The time period is 1984-09:2020-12. Classification accuracy based on the CRSP
index fund flag and “target date” name definition of “passive” for the 50% of Universe definition is 84% with a false
positive rate of 8%. Accuracy for the 60% of Universe definition is 87% with a false positive rate of 3%. Accuracy for
the 70% of Universe definition is 88% with a false positive rate of 1%.
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Figure D15: FIT Second-Stage Regressions — Passive Funds Only

(a) LTG Expectations

(b) Annual EPS Expectations

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t + FEt + e1,a,n,t

∆ya,n,t = b0 + α∆p̂a,n,t + FEt + e2,a,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading in-
strument (FITn,t). The second stage regresses changes in LTG expectations (∆LTGa,n,t) in Panel (a) and quarterly
revisions to annual EPS expectations with horizons of one to four years (∆Ea,n,t+4h|t) in Panel (b) on the instru-
mented price changes (∆p̂a,n,t). For each passive fund classification on the x-axis, both the results using the FIT
instrument constructed from only passive funds and the results using the standard FIT instrument in the matched
sample are displayed (i.e. stock n will be dropped from the sample if FITn,t cannot be constructed using only passive
funds because no passive funds hold stock n). FEt are quarter fixed effects. The solid error bars represent 90%
confidence intervals, while the dashed error bars display 95% confidence intervals, both of which are computed using
the tF procedure of Lee et al. (2022). Standard errors are clustered by quarter. All units are in percentage points
(i.e. 1.0 is 1%). The time period is 1984-09:2020-12. Classification accuracy based on the CRSP index fund flag and
“target date” name definition of “passive” for the 50% of Universe definition is 84% with a false positive rate of 8%.
Accuracy for the 60% of Universe definition is 87% with a false positive rate of 3%. Accuracy for the 70% of Universe
definition is 88% with a false positive rate of 1%.
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D.1 Calculating Rotemberg Weights

The FIT instrument is

FITn,t =
∑
i

fi,tSi,n,t−2

Let

Si,t = [Si,n,t]
N
n=1

be the vector of ownership shares for all stocks for fund i in quarter t. Let ∆pa,t = [∆pa,n,t]
N
n=1, where N

is the number of stocks.

Following Goldsmith-Pinkham, Sorkin and Swift (2020), the Rotemberg weight the FIT instrument

places on fund i in quarter t is

ri,t =
fi,t
∑

a S
′
i,t∆pa,t∑

j fj,t
∑

a S
′
j,t∆pa,t

.

I then aggregate the Rotemberg weights up to the fund style level. The aggregate weight for style s is

rs =
∑
i∈s

∑
t

ri,t,

where the outer summation sums over all funds i that belong to style s.

Table D6 displays the aggregate Rotemberg weights for all styles.

I use CRSP style codes to assign each fund i in each quarter t to a style. I construct the FIT instrument

by merging mutual fund flows from the CRSP Mutual Fund database — in which funds are identified by

the CRSP Fund Number identifier — and mutual fund holdings from the Thomson Reuters S12 database

— in which funds are identified by Wharton Financial Institution Center Number (WFICN) identifier. I

use the WRDS MFLinks database to link these identifiers. Some WFICNs map to multiple CRSP Fund

Numbers, and so map to multiple CRSP style codes. In these cases, I use the most common CRSP style

code for each (WFICN, quarter) pair. In the few cases where two CRSP style codes are equally common

for a particular (WFICN, quarter) pair, I assign the fund to a new category defined by the pair of styles.

Additionally, some (WFICN, quarter) pairs are unable to be matched to CRSP style codes and are assigned

the category “None” in Table D6; the total Rotemberg weight of these (WFICN, quarter) pairs is small.
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D.2 Within Fund-Quarter Cross-Sectional Ownership Share Variation Explained

To calculate the percentage of within fund-quarter cross-sectional variance in ownership shares explained

by a certain set of stock characteristics Xn,t, I calculate the within R2 of the following panel regression:

Si,n,t = c
′
i,tXn,t + FEi,t + S̃i,n,t

Within R2 = 1−
∑

i,n,t S̃
2
i,n,t∑

i,n,t

(
Si,n,t − S̄i,t

)
S̄i,t =

1

Num Holdingsi,t

∑
Si,n,t,

where S̄i,t is the average ownership share for fund i in quarter t. To be clear, the within R2 does not include

the variation in ownership shares explained by the fund-quarter fixed effects.

Figure D16 displays the cumulative percentage of ownership share variance explained by the six observed

stock characteristics associated with mutual fund styles: book-to-market ratio, log market equity, dividend-

to-book equity ratio, profitability, investment, and market beta. These six characteristics explain a total

of 46% of the within fund-quarter cross-sectional variance in ownership shares. Much of that variation is

explained by size (log market equity).

Figure D17 displays the cumulative percentage of ownership share variance explained by the latent

stock-quarter fixed effects and seven latent stock characteristics from the latent factor model (23) from

Section 5.4.2. These eight latent characteristics explain a total of 75% of the within fund-quarter cross-

sectional variance in ownership shares. Much of that variation is explained by the latent stock-quarter fixed

effects.
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Figure D16: Percentage of Within Fund-Quarter Cross-Sectional Variation in Ownership Shares Explained
by Observed Stock Characteristics

Percentage of within fund-quarter cross-sectional variation in ownership shares explained by the six observed stock
characteristics associated with mutual funds styles: book-to-market ratio, log market equity, dividend-to-book equity
ratio, profitability, investment, and market beta. The graph is cumulative: each column adds an additional stock
characteristic to the regression. So the sixth column reports the within R2 from the regression featuring all six stock
characteristics.
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Figure D17: Percentage of Within Fund-Quarter Cross-Sectional Variation in Ownership Shares Explained
by Latent Stock Characteristics

Percentage of within fund-quarter cross-sectional variation in ownership shares explained by the eight latent stock
characteristics: the latent stock-quarter fixed effects and the seven latent stock characteristics from the latent factor
model (23) from Section 5.4.2. The graph is cumulative: each column adds an additional latent characteristic to the
regression. So the eighth column reports the within R2 from the regression featuring the latent stock-quarter fixed
effects and all seven latent stock characteristics.

D.3 Latent Factor Model in Ownership Shares

I fit latent factor model (23) quarter-by-quarter using the regularized singular value decomposition technique

of Funk (2006). This method decomposes the mutual fund-by-stock matrix of ownership shares (St =

[Si,n,t]i,n) into the product of a matrix of fund-specific factor loadings (Ct =
[
c
′
i,t

]
i
) with a matrix of stock

characteristics (Xt = [Xn,t]n), after removing fund-quarter (FEFund
t ) and stock-quarter (FEStock

t ) fixed

effects:

St = CtXt + FEFund
t + FEStock

t + S̃t,

One can estimate matrices Ct, Xt, FEFund
t , and FEStock

t as the minimizers of the following loss function

min
Ct,Xt,FEFundt ,FEStockt

∑
i,n

(
Si,n,t − Ŝi,n,t

)2

s.t. Ŝi,n,t = c
′
i,tXn,t + FEi,t + FEn,t
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Empirically, most funds do not hold most stocks. For this reason, I can attain more efficient estimates

of Ct, Xt, FEFund
t , and FEStock

t by adding L2 penalties to the least-squares loss function (Funk (2006);

Bai and Ng (2019)):

min
Ct,Xt,FEFundt ,FEStockt

∑
i,n

(
Si,n,t − Ŝi,n,t

)2
+ γt

(
FE2

i,t + FE2
n,t + ‖ci,t‖2 + ‖Xn,t‖2

)
s.t. Ŝi,n,t = c

′
i,tXn,t + FEi,t + FEn,t.

Since I fit the factor model quarter by quarter, all regularization parameters can vary over time. I conduct

three-fold cross-validation within each quarter to choose the quarterly regularization parameter γt.

E Details of Covariance Decomposition

Following (2), the proportion of the covariance of prices with analyst cash flow expectations accounted for

by the impact of prices on analyst expectations is:

αhVCX [∆pa,n,t]

CovCX
(

∆pa,n,t,∆y
(h)
a,n,t

) , (39)

where ∆y
(h)
a,n,t is the change in analyst cash flow expectations for horizon h and ∆pa,n,t is the contempora-

neous change in price. αh is the impact of price on analyst cash flow expectations for horizon h. This ratio

is simply the two-stage least squares estimate of αh divided by the OLS coefficient from the regression of

changes in cash flow expectations on contemporaneous price changes:

∆y
(h)
a,n,t = αOLS

h ∆pa,n,t + ea,n,t (40)

αOLS
h =

CovCX
(

∆pa,n,t,∆y
(h)
a,n,t

)
VCX [∆pa,n,t]

.

However, there might be “measurement error” in the quarterly price changes ∆pa,n,t that biases the OLS

coefficient toward zero. For example, if analysts update cash flow expectations based only on price changes

for a subset of days during the quarter (e.g. the price change over the month before the announcement),

then the variance of the quarterly price change ∆pa,n,t exceeds that of this “true” price change ∆pTa,n,t:
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VCX [∆pa,n,t] > VCX
[
∆pTa,n,t

]
.

Thus, to calculate the true proportion of CovCX
(
∆pa,n,t,∆Ea,n,t+4h|t

)
accounted for by this price

impact, one must multiply (39) by VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t]. I measure this ratio following the method

of Pancost and Schaller (2022). Pancost and Schaller (2022) notes that if OLS regression (40) suffers from

omitted variable bias (due to common information or sentiment shocks impacting both analyst expectations

directly and prices through investor expectations) and measurement error, then αOLS is a linear function

of the true parameter αh:

αOLS
h =

VCX
[
∆pTa,n,t

]
VCX [∆pa,n,t]

αh +OV Bh.

Pancost and Schaller (2022) demonstrate that in an OLS regression of OLS coefficients αOLS
h on two-

stage least squares estimates αh

αOLS
h = a+ θαh + eh, (41)

θ is a consistent estimator of VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t].49

Pancost and Schaller (2022) note that any estimation error in two-stage least squares estimates αh will

create attenuation bias in θ, and so will result in an underestimation of VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t].

Thus, I draw quarterly block-bootstrapped samples, and estimate αOLS
h , αh, and θ in each sample. I

then compute the corrected proportion of covariance explained for each horizon:

αhVCX [∆pa,n,t]

CovCX
(

∆pa,n,t,∆y
(h)
a,n,t

)θ (42)

in each sample. I also report this proportion for the pooled set of all one to four year EPS expectations. When

running regression (41), I constrain θ from above so that θ ≤ 1 and the corrected covariance proportion

(42) does not exceed 1 for any horizon. I allow θ to be arbitrarily small.

Table E7 displays the covariance proportion explained by the impact of prices on analyst cash flow

expectations calculated using the ∆BMI instrument around Russell index reconstitutions. Column 1 reports

the unadjusted covariance proportion (39). Column 2 reports the corrected covariance proportion (42), using

the estimate θ = VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t] from regression (41) with no constraints. Column 3 reports

the corrected covariance proportion (42), using θ from regression (41) with the upper bound constraint on

49Specifically, Pancost and Schaller (2022) demonstrate θ is a consistent estimator of VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t] in the

case of classical measurement error. In this situation, ∆pa,n,t might feature non-classical measurement error as compared
to ∆pTa,n,t. Nevertheless, as discussed in Appendix E.1, the estimator from (42) will still accurately estimate the corrected
covariance decomposition (17) even in this non-classical measurement error case.
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θ such that θ ≤ 1 and the covariance proportion does not exceed one for any horizon (which is a tighter

constraint). There is no lower bound constraint on θ. The upper bound constraint on θ does not impact

the point estimates but tightens standard errors a little.

Using the ∆BMI instrument, the proportion of covariance explained for the pooled set of all one to

four year EPS expectations is 49%, which is similar to (and well within the 95% confidence interval of) the

headline 40% reported in Figure 1 Panel (b) using the FIT instrument. However, the standard errors are

larger than in Figure 1 Panel (b) because the horizon-specific αh estimates using the ∆BMI instrument

in Table B3 are much noisier than their counterparts in Table 4 and Figure 5 using the FIT instrument.

The proportion of covariance explained for the LTG expectations is 4% and not statistically distinguishable

from zero, which is consistent with 1) the non-significant estimate of α for the LTG expectations using the

∆BMI instrument in Table B3, and 2) the fact that noisier estimates of the horizon-specific two-stage least

squares αh lead to underestimation of θ.

Table E8 displays the same covariance proportions calculated using the FIT instrument.
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Table E7: Proportion of Covariance Explained by Price Impact on Analyst Cash Flow Expectations —
∆BMI Instrument

Unadjusted Adjusted - Unconstrained Adjusted - Constrained

LTG 0.334 0.040 0.040
(-2.287, 2.338) (-0.710, 0.779) (-0.710, 0.779)

Pooled Annual EPS Expectations 1.561 0.488 0.488
(0.974, 2.348) (0.018, 0.824) (0.018, 0.808)

1-Year EPS Expectations 1.765 0.568 0.568
(0.975, 2.729) (0.022, 0.868) (0.022, 0.851)

2-Year EPS Expectations 1.477 0.435 0.435
(0.887, 2.094) (0.017, 0.860) (0.017, 0.822)

3-Year EPS Expectations 0.506 0.158 0.158
(-1.302, 1.646) (-0.113, 0.687) (-0.113, 0.631)

4-Year EPS Expectations 0.842 0.325 0.325
(-1.808, 3.976) (-0.095, 0.871) (-0.095, 0.860)

θ 0.283 0.283
(0.012, 0.585) (0.012, 0.569)

Proportion of covariance of changes in cash flow expectations and contemporaneous price changes ex-
plained by price impact on analyst cash flow expectations using ∆BMI instrument around Russell index
reconstitutions. Point estimates are medians of quarterly block-bootstrapped sampling distributions (100
samples). 95% percent confidence intervals from block-bootstrapped sampling distributions are displayed
in parentheses. Column 1 reports covariance proportion (39), which is unadjusted for measurement error.
Column 2 reports covariance proportion (42), which is adjusted for measurement error using the estimate
θ = VCX

[
∆pTa,n,t

]
/VCX [∆pa,n,t] from regression (41) with no constraints. Column 3 reports covariance pro-

portion (42), which is adjusted for measurement error using the estimate θ = VCX
[
∆pTa,n,t

]
/VCX [∆pa,n,t]

from regression (41) with the upper bound constraint on θ such that θ ≤ 1 and the covariance proportion
does not exceed one for any horizon (there is no lower bound constraint on θ).
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Table E8: Proportion of Covariance Explained by Price Impact on Analyst Cash Flow Expectations — FIT
Instrument

Unadjusted Adjusted - Unconstrained Adjusted - Constrained

LTG 1.195 0.610 0.610
(0.691, 1.656) (0.148, 1.629) (0.148, 1.000)

Pooled Annual EPS Expectations 0.760 0.412 0.397
(0.436, 1.017) (0.107, 0.989) (0.108, 0.732)

1-Year EPS Expectations 0.757 0.402 0.386
(0.428, 1.052) (0.102, 1.076) (0.102, 0.784)

2-Year EPS Expectations 0.712 0.388 0.381
(0.395, 0.974) (0.096, 0.953) (0.096, 0.703)

3-Year EPS Expectations 0.769 0.404 0.397
(0.446, 1.182) (0.127, 1.095) (0.127, 0.714)

4-Year EPS Expectations 1.649 0.879 0.801
(0.719, 2.893) (0.401, 1.280) (0.396, 1.000)

θ 0.530 0.531
(0.155, 1.708) (0.155, 1.000)

Proportion of covariance of changes in cash flow expectations and contemporaneous price changes explained
by price impact on analyst cash flow expectations using FIT instrument. Point estimates are medians
of quarterly block-bootstrapped sampling distributions (100 samples). 95% percent confidence intervals
from block-bootstrapped sampling distributions are displayed in parentheses. Column 1 reports covariance
proportion (39), which is unadjusted for measurement error. Column 2 reports covariance proportion (42),
which is adjusted for measurement error using the estimate θ = VCX

[
∆pTa,n,t

]
/VCX [∆pa,n,t] from regression

(41) with no constraints. Column 3 reports covariance proportion (42), which is adjusted for measurement
error using the estimate θ = VCX

[
∆pTa,n,t

]
/VCX [∆pa,n,t] from regression (41) with the upper bound

constraint on θ such that θ ≤ 1 and the covariance proportion does not exceed one for any horizon (there
is no lower bound constraint on θ).

E.1 Non-Classical Measurement Error Case

It does not matter if the “measurement error” in the observed quarterly price changes is classical mea-

surement error or not. The estimator from (42) will still accurately estimate the corrected covariance

decomposition (17) in either case.

Assume the true model is:

∆pTa,n,t = Mza,n,t + εa,n,t

∆ya,n,t = α∆pTa,n,t + νa,n,t,

where ∆pTa,n,t is the true price change analysts respond to that I as the outside econometrician do not
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observe. Instead I observe the full quarterly price change

∆pa,n,t = ∆pTa,n,t + ∆pFa,n,t,

which is the true price change ∆pTa,n,t plus the price changes from other days in the quarter that analysts do

not learn from ∆pFa,n,t. I assume ∆pTa,n,t and ∆pFa,n,t are uncorrelated because there is little within-quarter

serial correlation in returns:

E
[
∆pTa,n,t∆p

F
a,n,t

]
= 0.

∆pFa,n,t creates measurement error. However, this measurement error may be correlated with the instru-

ment za,n,t, which may affect all daily price changes in the quarter, not only those daily price changes that

analysts respond to:

E
[
za,n,t∆p

F
a,n,t

]
6= 0.

Both prices and analyst expectations experience other, possibly correlated shocks (εa,n,t and νa,n,t). For

example, public, non-price signals about cash flows (e.g. earnings announcements) that both investors and

analysts learn from would appear in εa,n,t and νa,n,t.

The instrument is uncorrelated with other determinants of analyst expectations νa,n,t:

E [za,n,tνa,n,t] = 0.

The OLS regression coefficient from

∆ya,n,t = αOLS∆pa,n,t + e1,a,n,t,

is (assume all variables have been demeaned for simplicity):

αOLS =
E [∆ya,n,t∆pa,n,t]

V [∆pa,n,t]

=
E
[(
α∆pTa,n,t + νa,n,t

) (
∆pTa,n,t + ∆pFa,n,t

)]
V [∆pa,n,t]

= α
V
[
∆pTa,n,t

]
V [∆pa,n,t]︸ ︷︷ ︸
Attenuation

+
E
[
∆pTa,n,tνa,n,t

]
+ E

[
∆pFa,n,tνa,n,t

]
V [∆pa,n,t]︸ ︷︷ ︸ .

Omitted Variable Bias
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This OLS coefficient αOLS suffers from attenuation due to measurement error (∆pa,n,t is not ∆pTa,n,t) and

omitted variable bias (due to the correlation of ∆pa,n,t with other determinants of analyst expectations

νa,n,t).

The two-stage least squares regression

∆pa,n,t = aza,n,t + e2,a,n,t

∆ya,n,t = α2SLS∆p̂a,n,t + e3,a,n,t,

estimates

α2SLS =
E [za,n,t∆ya,n,t]

E [za,n,t∆pa,n,t]

=
E
[
za,n,t

(
α∆pTa,n,t + νa,n,t

)]
E
[
za,n,t

(
∆pTa,n,t + ∆pFa,n,t

)]
= α

E
[
za,n,t∆p

T
a,n,t

]
E
[
za,n,t∆pTa,n,t

]
+ E

[
za,n,t∆pFa,n,t

] .
This 2SLS coefficient α2SLS suffers from attenuation (i.e. is biased downward50) due to measurement error

(∆pa,n,t is not ∆pTa,n,t). In the classical measurement error case, E
[
za,n,t∆p

F
a,n,t

]
= 0 and so α2SLS does not

suffer from attenuation.

Thus, we have

αOLS = α
V
[
∆pTa,n,t

]
V [∆pa,n,t]

+
E
[
∆pTa,n,tνa,n,t

]
+ E

[
∆pFa,n,tνa,n,t

]
V [∆pa,n,t]

= α2SLS

V[∆pTa,n,t]
V[∆pa,n,t]

E[za,n,t∆pTa,n,t]
E[za,n,t∆pTa,n,t]+E[za,n,t∆pFa,n,t]

+
E
[
∆pTa,n,tνa,n,t

]
+ E

[
∆pFa,n,tνa,n,t

]
V [∆pa,n,t]

.

Thus, the regression (41) of αOLS
h on α2SLS

h for different horizons h yields:

αOLS
h = a+ θαh + eh,

50Here I assume that if the instrument for price za,n,t correlates positively with ∆pTa,n,t, it also correlates positively with
∆pFa,n,t. That is, I make the reasonable assumption that this empirical noise trader demand shock does not have opposite
impacts on the price changes analysts respond to and on those they do not respond to.
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consistently estimates

θ =

V[∆pTa,n,t]
V[∆pa,n,t]

E[za,n,t∆pTa,n,t]
E[za,n,t∆pTa,n,t]+E[za,n,t∆pFa,n,t]

.

As a result, the corrected covariance proportion from (42) is (again assuming all variables have been

demeaned):

α2SLS
h V [∆pa,n,t]

Cov
(

∆pa,n,t,∆y
(h)
a,n,t

)θ = αh

E
[
za,n,t∆p

T
a,n,t

]
E
[
za,n,t∆pTa,n,t

]
+ E

[
za,n,t∆pFa,n,t

] V [∆pa,n,t]

Cov
(

∆pa,n,t,∆y
(h)
a,n,t

) V[∆pTa,n,t]
V[∆pa,n,t]

E[za,n,t∆pTa,n,t]
E[za,n,t∆pTa,n,t]+E[za,n,t∆pFa,n,t]

= αh

V
[
∆pTa,n,t

]
Cov

(
∆pa,n,t,∆y

(h)
a,n,t

) ,
as desired.
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