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The pricing of stock market risks is central for our understanding of optimal

investment decisions. In this paper, we document that negative stock market returns

are significantly more painful to investors when they occur in periods of low volatility.

Specifically, low volatility is associated with (i) a steeper pricing kernel and (ii) larger

risk premia on out-of-the-money put options. We show that this fact is inconsistent

with most theoretical explanations for time-varying volatility.

To illustrate our finding, it is essential to distinguish between the pricing kernel,

Mt+1, which is potentially a function of many different shocks, and its projection

onto stock market returns, Et[Mt+1|Rt+1], which is only a function of returns and in-

vestors’ time-t information set. The “projected pricing kernel” reveals how marginal

utility is expected to vary with returns, and it has the same pricing implications as

Mt+1 for any claim on the market. We propose a maximum likelihood estimator

of the projection based on options and return data. The estimator requires no dis-

tributional assumptions about returns and allows us to condition on ex ante stock

market volatility. Figure I shows our estimate for the 10th and 90th percentile of

volatility. The steeper curve in periods of low volatility implies that negative returns

are significantly more painful to investors in calm markets.

This time-varying pricing of stock market risks is also evident in index option

returns. While it is well-known that out-of-the-money put options earn very large

negative returns on average (Rubinstein 1994), we document the complimentary fact

that put returns become even more negative in calm markets. Like our estimates of

the projected pricing kernel, this finding suggests that investors are more concerned

about negative returns in times of low volatility.

The finding in Figure I is surprising from the perspective of prior microeconomic

evidence, which shows that individuals become more risk averse in recessions (Cohn

et al. 2015; Guiso et al. 2018). All else equal, higher risk aversion in volatile markets

makes the pricing kernel (and its projection onto returns) steeper, rather than flatter.

Our finding may also appear surprising based on the fact that options become more

valuable when volatility rises. All else equal, higher put prices map to lower average
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Figure I: Volatility and the projected pricing kernel. We plot the projected pricing kernel,
Et[Mt+1|Rt+1], for the 10th and 90th percentile of conditional stock market volatility. The pricing
kernel is measured at a monthly horizon, parameterized by equations (4) and (5) with a polynomial
order of N = 2, and estimated over the 1990-2019 sample. Shaded areas represent pointwise 90%
confidence bounds.

put returns, yet we document empirically that the opposite relation hold true. On

the other hand, our finding is consistent with the absence of a risk-return trade-off

in the time series of stock market returns (Glosten et al. 1993). If a rise in risk

(stock market volatility) is accompanied by a sufficiently large drop in risk prices (a

flatter projected pricing kernel), expected returns will not vary with volatility.

To understand how the time-varying pricing of stock market risks relates to the

joint dynamics of volatility and the pricing kernel (before projecting it onto returns),

we derive Et[Mt+1|Rt+1] under the assumption that returns and the pricing kernel

are conditionally jointly lognormal. This setting is stylized, but it encompasses

the models of Campbell and Cochrane (1999) and Bansal and Yaron (2004) and
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the intuition it provides carries over to models with non-normal shocks. We show

analytically that a rise in stock market volatility makes the projected pricing kernel

flatter, as in the data, if it is not accompanied by a rise in the conditional volatility

of the pricing kernel. This finding has important implications for structural models.

We show that, in contrast to Figure I, the habit model of Campbell and Cochrane

(1999) implies that negative returns are less painful in calm markets, whereas the

long-run risks model of Bansal and Yaron (2004) implies that investors are indif-

ferent to the timing of negative returns. The same holds true for other models

with recursive utility and persistent state variables, including Drechsler and Yaron

(2011), Wachter (2013), and Constantinides and Ghosh (2017), which closely resem-

ble the original long-run risks model in terms of their implications for the projected

pricing kernel. We argue that the models’ counterfactual implications for the pricing

kernel are an inherent feature of their economic mechanisms, which rely on positive

comovement between the conditional volatilities of returns and the pricing kernel

to rationalize asset price dynamics. Without this tight connection, neither model

would be able to explain the countercyclical nature of volatility, the leverage effect

of Black (1976), or the long-horizon predictability of excess returns.

More encouragingly, we find that the model of Gabaix (2012) is consistent with

our empirical evidence. In his model, stocks’ exposure to consumption disasters

varies over time and the dynamics of this exposure are specified to be independent

of the pricing kernel. As a result, the volatility of returns evolves independent of the

pricing kernel’s volatility and the projection becomes steeper when volatility falls.

One explanation for our finding is therefore that stock market volatility evolves

independently of the pricing kernel. This explanation is consistent with empirical

evidence in Dew-Becker et al. (2017), who show that shocks to expected (as opposed

to realized) stock market variance command no risk premium, Jurado et al. (2015),

who show that stock market volatility is only weakly correlated with macroeconomic

uncertainty (a plausible driver of pricing kernel volatility), and (Glosten et al. 1993),

who show that volatility does not predict stock market returns in the time series.
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Related Literature. We build on a large literature that studies the pricing

kernel’s projection onto stock market returns based on index options, starting with

Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002). The

central finding of these studies is that the pricing kernel is a non-monotonic function

of stock market returns – an observation dubbed the “pricing kernel puzzle” due

to its inconsistency with standard models.1 With two exceptions that we discuss

below, however, the literature has not systematically examined time-variation in the

pricing kernel’s conditional distribution, and it has not connected properties of the

projected pricing kernel to macro-finance puzzles.

Methodologically, we build on estimation approaches that take the risk-neutral

distribution implied by option prices as given and then select parameters of E[M |R]

via a criterion function based on realized returns. Prior papers have implemented

this idea in somewhat unconventional estimation frameworks: Bliss and Panigirt-

zoglou (2004) maximize the p-value of a Berkowitz test for uniformity and inde-

pendence of returns, whereas Linn et al. (2018) minimize a generalized method of

moments criterion for moments of the conditional CDF of returns. We follow the

same general idea, but recognize that estimation can be performed via standard

maximum likelihood. In particular, once a functional form has been specified for

E[M |R], the likelihood function of returns can be computed without additional

parametric assumptions about the density of returns.

In terms of results, Bliss and Panigirtzoglou (2004) focus on estimating the

representative investor’s risk aversion, but show as an auxiliary result that estimates

are higher in subsamples with low volatility. Our finding is consistent with this

result, but differs along three key dimensions. First, Bliss and Panigirtzoglou’s

estimates are based on specific utility functions that imply a near-linear projected

pricing kernel. In contrast, we model the projection with a flexible polynomial

and find that it is strongly convex in returns. Our estimates show that linear

1In the online appendix, we show that our estimates are consistent with the projected pricing
kernel’s non-monotonicity. The main text focuses on the negative return region to draw attention
to the novel fact we document – covariation with volatility – and away from the existing fact.
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specifications are inconsistent with the large variance risk premium in the data, as

well as the central importance of stock market tail events for the equity premium

(Beason and Schreindorfer 2022). Second, Bliss and Panigirtzoglou interpret their

auxiliary finding as showing that risk aversion rises in times of low volatility. We

argue in stark contrast that the data is most consistent with stock market volatility

evolving largely independently from the pricing kernel and risk aversion. Third, we

use the projected pricing kernel to shed new light on the economic mechanisms of

equilibrium models, whereas Bliss and Panigirtzoglou’s study is purely empirical.

A contemporaneous and independently developed paper by Kim (2022) also stud-

ies time-variation in the projected pricing kernel. Kim shows how the projection

varies with many different macroeconomic covariates (including volatility) and ana-

lyzes implications for time-variation in conditional risk premia. Similarly, Driessen

et al. (2020) study the time-variation of the projected pricing kernel with respect

to the CFNAI index and find relatively small effects. We focus on covariation with

volatility only, but additionally explore its economic drivers theoretically by link-

ing it to the joint dynamics of returns and the pricing kernel. Empirically, Kim

finds qualitatively similar covariation of the projection with volatility as we do, but

the effect he estimates is noticeably smaller. We show that this is a result of how

volatility-dependence is modelled. Specifically, the nonlinear functional form we

propose leads to substantially better fit to returns than the linear specification in

Kim (2022), despite being more parsimonious.

Our theoretical result that market volatility must evolve close to independent

of the pricing kernel in order to explain time-variation in the projected pricing

kernel is consistent with prior empirical work. In particular, Jurado et al. (2015)

show that macroeconomic uncertainty is only weakly correlated with stock market

volatility and considerably more persistent. Additionally, these authors find that an

increase in macroeconomic uncertainty leads to sizable and protracted decline in real

activity (production, hours, employment), whereas Berger et al. (2020) show that an

increase in expected stock market volatility does not. It is therefore plausible that
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stock market volatility is not an important determinant of marginal utility, whereas

macroeconomic uncertainty is.

The idea to estimate time-variation in the pricing kernel is complementary to

recent “recovery” research, started by Ross (2015). The general idea of this lit-

erature is to impose economically motivated restrictions on the pricing kernel and

data-generating process in order to recover physical probabilities from risk-neutral

probabilities based on options data. Our assumptions are statistical in nature, but

implicitly share the goal of recovering conditional physical probabilities from op-

tions. The parametric structure we impose on the projected pricing kernel allows us

to employ a likelihood-based estimation approach to recover physical densities that

provide the best fit to the data.

Our estimation yields conditional return distributions as a byproduct. This

allows us to shed new light on a number of findings in related papers that study

time-variation in return moments based on options data. First, Gormsen and Jensen

(2022) show that stock market returns become more left-skewed and fat-tailed in

times of low volatility. We repeat their analysis separately for physical moments

and moment risk premia, and find that the co-movement of option-implied moments

results almost entirely from co-movement in risk premia, rather than co-movement

in physical moments (see Section IA. VIII). This result is a useful complement to

Gormsen and Jensen’s finding because it provides additional information about its

economic drivers. Second, Martin (2017) derives a lower bound for the conditional

equity premium that can be computed from option prices. To do so, he assumes

the “negative correlation condition”, Covt[Mt+1Rt+1, Rt+1] ≤ 0, and verifies that it

holds in a wide range of asset pricing models. We evaluate the condition empirically

based on our estimates of the pricing kernel and conditional return distribution and

find that it is violated on about 1% of all days (see Section IA. VII). Importantly,

the violations occur primarily during the financial crisis of 2008, precisely the time

when Martin finds the equity premium to be particularly high. This finding suggests

that the equity premium may not be as volatile as implied by Martin’s estimates.
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I. Estimation

This section explains our approach for estimating the pricing kernel as a function

of stock market returns and conditional volatility, discusses data sources, and illus-

trates the robustness and statistical significance of our estimates. Throughout, the

pricing kernel in period (t + 1) is denoted by Mt+1, the ex-dividend market return

by Rt+1, and “t”- subscripts indicate moments and probability density functions

that condition on investors’ information set at time-t.

A. Estimation Approach

In the absence of arbitrage opportunities, the pricing kernel’s projection onto stock

market returns equals2

Et[Mt+1|Rt+1] =
1

Rft

f∗t (Rt+1)

ft(Rt+1)
, (1)

where Rft is the risk-free rate and f∗t (Rt+1) and ft(Rt+1) denote the conditional

risk-neutral and physical density of Rt+1, respectively. The projection measures the

mean of Mt+1 conditional on investors’ information set at time-t and conditional

on a (potential) return outcome at time-(t+ 1). Apart from the market return, (1)

therefore averages over all shocks that affect the pricing kernel at (t + 1). Impor-

tantly, (1) is generally a nonlinear conditional expectation function of Rt+1 for any

time-t information set, i.e., it is not a linear projection. Our estimation conditions

on volatility as part of investors’ time-t information set, as further detailed below.

To estimate Et[Mt+1|Rt+1], we extract f∗t from option prices for each day of

the sample based on the classic result of Breeden and Litzenberger (1978). This

methodology is fairly standard and we refer interested readers to Appendix A for

details. Next, we model the projection with a flexible parametric function of returns

and the conditional return volatility, M(Rt+1, σt; θ), and combine it with (1) to

2The fact that the pricing kernel equals the ratio of risk-neutral to physical probabilities (scaled
by Rf ) is a well-known textbook result – see, e.g., Cochrane (2005), p. 51. We provide a derivation
for the projected pricing kernel in the online appendix.
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express the conditional physical density as

ft(Rt+1; θ) =
f∗t (Rt+1)

Rft ×M(Rt+1, σt; θ)
. (2)

Given a functional form for M(Rt+1, σt; θ), the unknown parameter vector θ can be

estimated by maximizing the log-likelihood of realized returns,

LL(θ) =

T∑
t=1

ln ft(Rt+1; θ). (3)

Our notation emphasizes ft’s dependence on the parameter vector θ, but it is im-

portant to note that the density does not belong to a known parametric family of

distributions. Rather, it results from applying a (parametric) change-of-measure to

the (nonparametric) risk-neutral distribution f∗t , whose shape is completely flexible

and implied by the market prices of equity index options.

Our maximum likelihood estimator is statistically efficient and it incorporates

conditioning information from the entire risk-neutral distribution. Both features

represent important advantages over moment-based estimation approaches. Fur-

thermore, our estimator makes it straightforward to incorporate information from

additional time-t conditioning variables, which we utilize to illustrate the robustness

of our findings in Section I.E.

B. Parameterizing the Projected Pricing Kernel

We model the projection as an exponential polynomial,3

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=1

cit × (lnRt+1)i

}
, (4)

where the polynomial coefficients cit vary with volatility according to

cit =
ci

σb×it

, (5)

δt is a time-varying intercept, and θ = (b, c1, ..., cN ). The intercept is calculated for

each day of the sample to satisfy the theoretical restriction that ft(Rt+1; θ) integrates

3Prior papers that have modelled the pricing kernel as a polynomial include Chapman (1997),
Dittmar (2002), Rosenberg and Engle (2002), and Jones (2006).
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to one, i.e., δt does not represent a free parameter.4,5 The conditional volatility σt

is estimated with the heterogeneous autoregressive (HAR) model of Corsi (2009)

based on intradaily return data– see Appendix B for details.

We experimented with different functional forms for the time-varying polynomial

coefficients cit, and found that (5) provides a very good fit (in terms of log-likelihood)

despite its parsimony. Additionally, when we estimated a more flexible functional

form for the relationship between cit’s and σt with more free parameters, we found

that its shape closely resembles the one in (5) – see Section I.B of the online appendix

for details. This alternative specification for cit’s is used to illustrate the robustness

of our results in Section I.F. Lastly, (5) nests two interesting special cases. For b = 0,

the projected pricing kernel equals a time-invariant function of returns,

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=0

ci × (lnRt+1)i

}
, (6)

i.e., the graph of E[M |R] does not vary with volatility, apart from a small vertical

shift induced by δt. For b = 1, the projected pricing kernel equals a time-invariant

function of standardized returns (up to a vertical shift due to δt),

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=0

ci ×
(

lnRt+1

σt

)i}
. (7)

In this case, the graph of E[M |R] scales horizontally and proportionally with volatil-

ity. Intermediate values of b allow E[M |R] to change with volatility to varying

degrees. To formally test whether E[M |R] varies with volatility, we evaluate the

hypothesis H0 : b = 0.

4The intercept equals δt = − lnRft + ln
(∫∞

0
f∗ × exp

{
−
∑N
i=1 cit × (lnRt+1)i

}
dRt+1

)
, i.e.,

its value is implied by Rft , f∗t , and the polynomial coefficients (b, c1, ..., cN ). We find δt for each
date by evaluating this integral numerically. By substituting the expression for δt into (4) and then
(4) into (2), it can be verified that ft integrates to one.

5Instead of computing δt based on the theoretical restriction
∫
f = 1, one could add a time-

varying intercept c0t to polynomial (4) and model c0t as a function of volatility. Since this approach
does not guarantee

∫
f = 1, however, it becomes necessary to add a penalty for violations of the

restriction to the objective function. In turn, doing so requires the researcher to make a (necessarily
subjective) choice on the relative importance of the restriction and the fit to realized returns. Kim
(2022) does so in the context of a moment-based estimation of the pricing kernel.
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C. Parameter Identification

The pricing kernel controls the extent to which conditional real world probabilities

differ from their risk-neutral counterparts. Specifically, (2) shows that ft(R) takes

on smaller values than f∗t (R) for return regions where M(Rt+1, σt; θ) > 1/Rft and

higher values whereM(Rt+1, σt; θ) < 1/Rft . Individual elements of θ = {c1, ..., cN , b}

are therefore identified if they alter the shape of E[M |R] in such a way that it better

explains the relative likelihood of different return realizations. Since f∗t does not vary

with θ, one can equivalently think of parameters as being identified by risk premia:

An increase in the mean of ft is equivalent to a higher equity premium, an increase

in the variance of ft is equivalent to a higher (less negative) variance premium, etc.

Most elements of θ alter the shape of ft in multiple ways relative to that of f∗t .

Nevertheless, it is useful to discuss the main sources of parameter identification.

c1, the slope of E[M |R], controls the relative probabilities of negative and positive

returns. If the slope is negative, for example, the left tail of f∗t gets downweighted

in computing ft, whereas the right tail gets upweighted. c1 is therefore identified

by the mean of ft and the likelihood of negative returns. c2, the curvature of

E[M |R], controls the relative probabilities of small and large absolute returns. If the

curvature is positive, both extreme tails of ft get downweighted relative to the tails

of f∗t , whereas the center of the distribution gets upweighted. Hence, c2 is identified

by the variance of ft and the likelihood of extreme returns. c2 is also negatively

related to the mean of ft because f∗t is left-skewed, so that the equity premium

further aids in its identification. Similarly, c3, c4, etc. are identified by higher order

moments of ft. The scaling parameter b controls how parameters of E[M |R] vary

with volatility, and therefore the amount of time-variation in the probabilities of

different returns. For b > 0, an increase in volatility makes the slope of E[M |R] less

negative and its curvature less positive. b is therefore identified by the amount of

time-variation in the moments of ft, relative to time-variation in the corresponding

f∗t moments. We illustrate these channels quantitatively in Table IA.I of the online

appendix by showing the sensitivity of moments of ft to individual parameters.
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D. Data

We use the S&P 500 index as a proxy for the aggregate stock market and focus

on a return horizon of one month (30 calendar days). Return data comes from

the Center for Research in Security Prices (CRSP). Option price quotes for the

estimation of f∗t come from the Chicago Board Options Exchange (CBOE). Because

this data limits our sample to the 30-year period from 1990 to 2019, we sample

daily to maximize the efficiency of our estimates, i.e., we work with a daily sample

of T = 7, 556 overlapping monthly returns. The estimation of conditional return

volatilities (detailed in Appendix A) relies on intra-daily price quotes for S&P 500

futures, which were purchased from TickData. We use quotes for the large futures

contract (ticker “SP”) from 1990 to 2002, and for the E-Mini Futures contract

(ticker “ES”) from 2003 to 2019, i.e., we use data for the more actively traded

futures contract in each part of the sample. Lastly, we use interest rates data from

the Federal Reserve Bank of St. Louis’ FRED database for robustness tests.

E. Estimation Results

Table I shows estimates for the parameterized pricing kernel in (4) and (5), and

polynomial orders between N = 1 and N = 5. To account for autocorrelation

that results from the use of overlapping return data, we determine the statistical

significance of our estimates based on a block bootstrap with a block length of 21

trading days.6

The estimation results are easily summarized. The volatility-scaling parameter

b is positive and significantly different from zero for all polynomial orders, and

its significance grows in N . The observation that the shape of E[M |R] varies with

volatility is therefore not sensitive to the assumed polynomial order. In fact, E[M |R]

is well-described as scaling proportionally with volatility since the point estimate of

b is close to one for all N > 1.

6Volatility is also persistent, but this fact does not require a standard error adjustment because
it does not induce autocorrelation into the observations that enter the objective function (3).
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Table I: Estimation results

We estimate the projected pricing kernel in (4) and (5) for different polynomial orders N by maxi-
mizing the log likelihood of realized returns, (3). Statistical inference is based on a block bootstrap
with a block length of 21 trading days. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5% and 1%
levels.

N 1∗∗∗ 2∗∗∗ 3∗∗∗ 4∗∗∗ 5∗∗∗

Log-likelihood 14,275∗∗∗ 14,370∗∗∗ 14,370∗∗∗ 14,384∗∗∗ 14,384∗∗∗

ĉ1 -0.017∗∗∗ -0.067∗∗∗ -0.068∗∗∗ -0.095∗∗∗ -0.095∗∗∗

ĉ2 –∗∗∗ 0.100∗∗∗ 0.103∗∗∗ 0.020∗∗∗ 0.020∗∗∗

ĉ3 –∗∗∗ –∗∗∗ 0.000∗∗∗ 0.011∗∗∗ 0.011∗∗∗

ĉ4 –∗∗∗ –∗∗∗ –∗∗∗ 0.003∗∗∗ 0.003∗∗∗

ĉ5 –∗∗∗ –∗∗∗ –∗∗∗ –∗∗∗ 0.000∗∗∗

b̂ 1.600∗∗∗ 0.976∗∗∗ 0.973∗∗∗ 1.098∗∗∗ 1.097∗∗∗

The log-likelihood increases substantially when the polynomial order is increased

from N = 1 to N = 2, but only moderately thereafter. A likelihood ratio test rejects

N = 1 in favor of N = 2 with a p-value of 0.15%, but fails to reject N = 2 in favor of

any N > 2 at the 10% level (untabulated).7 We show below that the reason for the

log-linear pricing kernel’s poor fit lies in its inability to match the sample variance

premium. Hence, the data clearly favors specifications for which the logarithm of

E[M |R] is convex. Since the parsimonious quadratic (N = 2) kernel is not rejected in

favor of more flexible specifications, we use it as our benchmark case. All subsequent

results are based on this estimate, unless otherwise mentioned.

Figure I in the introduction illustrates graphically how E[M |R] varies with

volatility by plotting it for the 10th and 90th percentile of σt (p10 and p90). The

figure shows that the pricing kernel is considerably steeper when volatility is low.

For example, for a monthly return of -10%, the projected pricing kernel equals

M(Rt+1 = −0.1, σt = p10; θ) = 3.68 when volatility is low and M(Rt+1 = −0.1, σt =

p90; θ) = 1.32 when volatility is high.

7There is no established method for dealing with overlapping data in likelihood ratio tests. We
therefore rely on an ad-hoc sub-sampling approach. Specifically, we use observations 1, 22, 43, ..., as
the first subsample, observations 2, 23, 44, ..., as the second subsample, and so on, up to observations
21, 42, 63, ..., as the last subsample. We then estimate the two nested specifications of E[M |R] in
each subsample, compute their likelihood ratio, and average the individual likelihood-ratio statistics
across the 21 subsamples. Finally, we compute critical values based on the statistic’s asymptotic
χ2-distribution.
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Figure II: Conditional density estimates for select days. We plot the estimated physical and
risk-neutral return density for days on which conditional volatility is close to its 10th (left panel)
or 90th (right panel) percentile. Estimates are based on the E[M |R] specification in equations (4)
and (5) and a polynomial order of N = 2.

Figure II shows the resulting conditional return densities for two dates. For

comparability with Figure I, we choose days on which conditional volatility is close

to its 10th percentile and 90th percentile, respectively. Because our parameterization

of E[M |R] implies a smooth change-of-measure, ft inherits many of f∗t ’s properties.

It is unimodal, roughly bell-shaped, and its conditional volatility moves with that of

f∗t . Relative to f∗t , however, ft has more probability mass in the center and less mass

in the left tail. As a result, the physical density is less left-skewed and leptokurtic

than its risk-neutral counterpart, the equity premium is positive, and the variance

premium is negative.

Across the 7,556 trading days in our sample, the conditional physical (risk-

neutral) density has an average mean of 9.06% (0.98%) p.a., standard deviation of

13.83% (17.97%) p.a., skewness of -0.61 (-1.48), and kurtosis of 4.43 (10.47). We

show the time series of these moments in Figure IA.III of the online appendix. Our

density estimates imply that the conditional equity premium Et[Rt+1] − E∗t [Rt+1]
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has an average of 8.1% p.a., which closely matches the average excess return on

the S&P 500 of 8.0% over the 1990-2019 period. Similarly, our density estimates

imply that the conditional variance premium vart[Rt+1]−var∗t [Rt+1] has an average

of -12.4%2 per month, which closely matches the average σ2
t −

(
V IXt
100

)2
of -13.2%2

per month over 1990-2019. The parametric pricing kernel therefore provides a good

fit for stock market risk premia in our sample. Additionally, both risk premia are

well-identified by E[M |R]: Our bootstrap estimates imply 99% confidence intervals

of [2.8%, 13.3%] per year for the average equity premium and [−17.0%2,−7.5%2]

per month for the average variance premium.

F. Robustness

We perform five robustness tests. First, we model the projected pricing kernel’s

volatility-dependence with the alternative specification

cit =

K∑
k=0

cik × σkt , (8)

which assumes that coefficients of the E[M |R]-polynomial are themselves polyno-

mials of volatility. The combination of (4) and (8) is equivalent to a bivariate

polynomial in lnRt+1 and σt with a tensor product base. We find that, for K = 2

and higher orders, the estimated functional relationship between σt and cit’s implied

by (8) closely resembles the one in our benchmark specification (5). As a result, the

relationship between σt and the shape of M(Rt+1, σt; θ) also closely resembles the

one in our benchmark specification. We illustrate this fact for K = 3 below and for

other polynomial orders in the online appendix.8 Relative to (8), our benchmark

specification (5) has the advantage of being more parsimonious.

Second, we allow the projected pricing kernel to comove with additional macroe-

8The linear case (K = 1) implies too little time-variation in cit’s and therefore too little time-
variation in M(Rt+1, σt; θ). Relative to our benchmark estimates, the log-likelihood is lower (at
14,352) and implied physical moments are closer to their risk-neutral counterparts. The K = 1
case corresponds to the specification in Kim (2022), apart from the fact that he models the pricing
kernel’s intercept as parametric function of volatility, whereas we choose it such that the implied
return densities integrate to one – see footnote 5 for details.

14



conomic time series by modeling coefficients of the E[M |R]-polynomial as

cit =
ci0 + ci1 × short rate + ci2 × term spread + ci3 × credit spread

σb×it

. (9)

In doing so, we are able to evaluate whether volatility continues to induce variability

in E[M |R] once other sources of variation are accounted for, i.e., whether b continues

to be significantly different from zero. We measure the short rate by the yield of

a 3-month Treasury bill, the term spread by the difference in yields of a 10-year

Treasury bond and a 3-month Treasury bill, and the credit spread by the difference

in yields of a 10-year corporate bond with Moody’s Aaa rating and an equivalent

bond with a Baa rating.

Third, instead of modelling E[M |R] as a polynomial, we model ft(Rt+1; θ) as

a parametric density and obtain E[M |R] from (1) as the ratio of risk-neutral and

physical densities, scaled by the risk-free rate. Specifically, we parameterize the

density of standardized log returns, gt

(
lnRt+1

σt
; θ
)

, with a normal inverse Gaussian

(NIG) distribution and compute the distribution of simple returns via a change of

variables as ft(Rt+1; θ) = gt

(
lnRt+1

σt
; θ
)
/(σt × Rt+1). The NIG distribution is uni-

modal, bell-shaped, allows for nonzero skewness and excess kurtosis, and depends

on four parameters, which we estimate via maximum likelihood. This method for

estimating the conditional distribution resembles the popular approach of scaling

historical return innovations with an estimate of conditional volatility – see, e.g.,

Rosenberg and Engle (2002), Barone-Adesi et al. (2008) and Christoffersen et al.

(2013) – and shares its limitation that higher conditional moments (beyond volatil-

ity) are time-invariant by construction. In contrast, the parameterized pricing kernel

in our benchmark specification allows all return moments to vary over time.

Fourth, we re-estimate the benchmark specification in the second half of the

sample (2005–2019) to address concerns about a possible segmentation between in-

dex option and equity markets. In particular, Dew-Becker and Giglio (2022) argue

that the two markets have historically been segmented, but also provide evidence

suggesting that they have become well-integrated since about the mid 2000’s. If
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Figure III: Robustness. We plot the projected pricing kernel for the 10th and 90th percentile
of conditional stock market volatility. Top-left: lnE[M |R] is a N = 2 polynomial with coefficients
that depend on volatility via (8) with K = 3. Top-right: lnE[M |R] is a N = 2 polynomial
with coefficients that depend on volatility, short-term interest rates, the term spread, and credit
spreads via (9). Bottom-left: We model the distribution of standardized log returns lnRt+1/σt
with a Normal Inverse Gaussian distribution, compute ft(Rt+1) via a change-of-variables, and
obtain E[M |R] from (1). Bottom-right: E[M |R] is equivalent to the benchmark specification, but
estimated over the 2005-2019 subsample.

16



time-variation in the estimated projected pricing kernel was a result of market seg-

mentation, one would expect it to be substantially weaker in more recent data.

Figure III shows that, for each of the four alternative estimates, the projected

pricing kernel’s volatility-dependence looks similar to our benchmark estimates in

Figure I. Parameter estimates for these specifications are reported in Section I.III of

the online appendix. In the bivariate polynomial specification, a likelihood ratio test

strongly rejects the hypothesis H0 : cik = 0∀i, k > 0 (time-invariance) with a p-value

of 0.2%. In the specification with additional covariates, the estimated volatility-

scaling parameter of b̂ = 1.06 is very close to the benchmark estimate of 0.976,

and it remains statistically significant with a p-value of 0.064. The parameterized

density approach does not lend itself to a formal statistical test, but the amount

of time-variation in E[M |R] is quantitatively similar to that in Figure I. In the

2005–2019 estimation, the corresponding point estimate of b is once again similar

to the benchmark at b̂ = 1.01. Our main result is therefore not sensitive to the

way E[M |R] is parameterized, the volatility-dependence of E[M |R] does not reflect

comovement between volatility and other state variables, and it can also not be

explained by market segmentation.

G. The Economic Importance of Convexity

We saw above that the log-quadratic specification of E[M |R] provides a significantly

better fit to return data than its log-linear counterpart. To illustrate what this

difference implies economically, we now illustrate its implications for risk premia.

For N = 1, the estimates in Table I imply that the conditional physical density

has an average standard deviation of 16.9%, skewness of -1.33, and kurtosis of 11.43.

All of these moments are much closer to their risk-neutral counterparts than in

the benchmark N = 2 case, and risk premia on higher moments are smaller as

a result. For example, the average variance premium equals −4.4%2 per month

with a 99% confidence interval of [−7.1%2,−1.0%2]. The -13.2%2 sample average of

σ2
t −

(
V IXt
100

)2
has a bootstrapped p-value of 0.00% under the sampling distribution
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Figure IV: Average E[M |R] for linear and quadratic specifications. E[M |R] is parameter-
ized by (4) and (5) with polynomial orders of either N = 1 or N = 2.

of the N = 1 estimator. Hence, a log-linear projected pricing kernel is inconsistent

with the variance premium.

Whereas the log-linear specification provides a good fit to the sample equity

premium of 8.0% p.a., with an implied value that also equals 8.0%, we find that

it is inconsistent with its sources. Specifically, Beason and Schreindorfer (2022)

propose a non-parametric decomposition of the equity premium into contributions

of different return regions, and find that monthly returns below -10% account for

about 80/100 of the total premium. Based on our parametric estimates, we find the

equivalent contribution to be 37/100 for N = 1 and 72/100 for N = 2.9 The log-

linear specification of the projected pricing kernel therefore substantially understates

the importance of stock market tail events for the equity premium, whereas the log-

quadratic specification captures it well.

The reason for both shortcomings is illustrated in Figure IV, which shows the

9The decomposition is based on the average distributions f(R) = 1
T

∑T
t=1 ft(R)

and f∗(R) = 1
T

∑T
t=1 f

∗
t (R). The relative contribution of returns below -10% equals(∫ 0.9

0
(R− 1)[f(R)− f∗(R)]dR

)
/
(∫∞

0
(R− 1)[f(R)− f∗(R)]dR

)
.
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average projected pricing kernel for polynomial orders of N = 1 and N = 2. Rel-

ative to the log-quadratic case, the log-linear pricing kernel is substantially flatter,

especially in the far left tail of the return distribution. It is therefore misspecified

in the sense that it substantially understates investors’ aversion against tail events.

As a result, it is problematic to estimate investors’ risk aversion based on such a

specification, as, e.g., in Bliss and Panigirtzoglou (2004).

II. Volatility and Expected Put Option Returns

To address potential concerns about a misspecified parametric functional form of

E[M |R], we present a non-parametric alternative via put returns to measure our

main finding. We find that returns are increasing in volatility, which confirms that

negative returns are less painful to investors in bad times.

For our test, we use a panel of realized out-of-the-money put returns, with target

moneyness levels Ki/St − 1 that range from -24% to 0, in steps of 2%. For each

month, we select the put option with 30 days until maturity that expires on the main

expiration cycle (third Friday), and has moneyness closest to the target, but is at

most ±1% away from the target. Finally, we compute realized hold-until-maturity

returns for each put option. To proxy for low and high volatility, we split the sample

and calculate average returns if the ex ante σt is below its 25th percentile, or above

its 75th percentile, respectively.

The circles plotted in Figure V denote the average realized excess put returns,

conditional on low and high volatility. It is evident that when volatility is low,

average realized put returns decrease rapidly in their moneyness, while the decrease

is slow in times of high volatility.

This finding might be counter-intuitive at first sight. Since option prices are

higher if volatility is high, one might expect that returns are on average lower.

However, the results show that the opposite is true. While option in times of high

volatility are expensive in dollar terms, they are relatively cheap in terms of expected

returns. In addition, we compute the expected monthly S&P 500 put returns implied
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by our benchmark estimation of E[M |R]. Figure V illustrates the results, where low

and high volatility periods are defined as before. One can clearly see that implied

values are well in line with realized ones.10

-25 -20 -15 -10 -5 0
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-40

-20

0

Figure V: Put returns. The plot shows expected and realized monthly S&P 500 put option
returns. Implied values are from our benchmark estimate of E[M |R] and the lines correspond to
high and low volatility (10th and 90th percentile of σt, respectively). The circles denote average
realized monthly S&P 500 put option excess returns in our sample. Here, low and high volatility
are defined as days on which conditional volatility is below its 25th percentile and above its 75th
percentile, respectively.

To understand the relationship of the observed implied pattern to the slope of

E[M |R] intuitively, first note that the expected return on an Arrow-Debreu security

that pays 1$ if the return on the index at maturity is exactly equal to R is 1/E[M |R],

i.e., it is inversely proportional to the level of M. Since E[M |R] is always higher in

times of low volatility (see Figure I) relative to high volatility, all Arrow-Debreu

10In contrast, specifications without time-variation in E[M |R] (b = 0) fail to match the time-
variation if expected put returns, and log-linear specifications fail to match the convexity of E[M |R]
and imply much too high levels of put returns.
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securities that pay off in the domain of negative returns have lower expected returns

relative to high volatility times. To make the connection to puts it is helpful to

think of a put option as a portfolio of all Arrow-Debreu securities that pay off below

the strike of the put. Since all the securities in the portfolio have a lower return,

their weighted average does as well, and hence put returns are more negative in low

volatility periods.

To confirm the empirical result regarding put returns and to assess the statistical

significance of the time-variation, we run then following predictive regression:

RPutt+1,i −Rf,t = α+ β ln(σt) + γKi/St + εt+1,i. (10)

Based on the graphical evidence in Figure V we expect that the β coefficients de-

pends on moneyness in a non-trivial way, and we hence run the regression separately

for each moneyness bin. We use a log-transform of the volatility, since this is more

consistent with the theoretical result that put returns approach the risk-free rate

as σ → ∞ (Hu and Jacobs 2020). We use the options’ initial moneyness Ki/St as

control, since it clearly relates to the expected return, even when holding moneyness

in a tight interval.

The results in Table II show that put returns are indeed predictable by ex ante

expected return volatility for a large range of moneyness levels. For intermediate

moneyness levels, the effect is statistically and economically significant. To illustrate

the magnitude, note that σt increase by a factor of about 2.2 between p10 and p90.

Hence a β = 0.5 implies an increase in expected put returns of 0.5 × ln(2.2) =

39% on a monthly basis from good to bad times.11 For both very high and very

low moneyness levels Figure V shows there is little difference in realized returns,

and hence it is not surprising that the predictive relationship is not significant

everywhere.

11This finding on the time-series predictability of S&P 500 put returns is consistent with findings
on the cross-section of singe stock put returns (across different underlings) in Hu and Jacobs (2020)
and Aretz et al. (2022). Both papers show empirically that single stock put returns are increasing
in (idiosyncratic) volatility. Importantly, however, their finding is a cross-sectional result, and is
driven by different levels of volatility of single stocks, and not by time-series variation in (systematic)
volatility.
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Table II: Predicting out-of-the-money put returns

The table shows β regression coefficients from (10) for different levels of initial moneyness. The
description of the option panel construction is provided in the text. ∗, ∗∗, and ∗∗∗ denote significance
at the 10%, 5% and 1% levels. t-statistics (in parenthesis) are adjusted for heteroscedasticity and
autocorrelation (Newey and West 1987).

K/S−1,% −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

β̂ 0.02∗∗ 0.24∗∗ 0.34∗∗ 0.43∗∗ 0.45∗∗ 0.49∗∗ 0.49∗∗ 0.52∗∗ 0.41∗∗ 0.29∗∗ 0.05∗∗∗

(1.27)∗∗(1.63)∗∗(2.01)∗∗(2.17)∗∗(2.36)∗∗(2.19)∗∗(2.45)∗∗(2.50)∗∗(1.86)∗∗(1.31)∗∗∗(0.25)∗∗

Overall, these results show nonparametrically that negative returns are less

painful to investors in bad times. In low volatility times, they are willing to in-

cur a much more negative returns on average on an insurance via a put option for a

given moneyness level relative to high volatility times. Hence we confirm our main

finding using a economically potentially more intuitive and natural unit.

Moreover, put returns are heavily studied in the options literature. One of the

main puzzles are their high prices and low returns, which Gabaix (2012) calls one

of the ten major puzzles in finance. We add to that puzzle, by showing that put

returns are particularly low in low volatility times, or conversely, their prices are

relatively high.

22



III. Economic Interpretation

Which economic forces cause time-variation in Et[Mt+1|Rt+1]? What does the time-

varying pricing of stock market risks reveal about the joint dynamics of volatility

and the pricing kernel (before projecting it onto returns)? What connections, if any,

are there to other stock market phenomena, such as the average equity premium,

return predictability, or the risk-return trade-off? This section attempts to answer

these questions by examining the projected pricing kernel in a number of structural

asset pricing models. We relegate all computational details to the online appendix.

A. Intuition and Overview of Results

Figure VI shows Et[Mt+1|Rt+1] in the models of Campbell and Cochrane (1999),

Bansal and Yaron (2004), and Gabaix (2012). A number of additional models are

analyzed in the online appendix and briefly discussed below. In contrast to the data,

the habit model (top-left panel) implies that the projection becomes steeper when

volatility rises, whereas the long-run risks model (top-right panel) implies that its

shape does not vary with volatility. In line with the data, the time-varying dis-

aster risk model (bottom panel) implies that the projection becomes flatter when

volatility rises. To understand the source of this behavior and link it to the models’

economic mechanisms, we first characterize the shape of Et[Mt+1|Rt+1] in a general

lognormal setting, which encompasses two of the aforementioned models.

PROPOSITION 1. Assume that the log pricing kernel and log return follow

lnMt+1 =µm,t − σm,tεs,t+1

lnRt+1 =µr,t + σs,tεs,t+1 + σi,tεi,t+1,

where the systematic shock εs,t and the idiosyncratic shock εi,t are IID standard

normal. Then time-variation in the shape of Et[Mt+1|Rt+1] can be characterized by

∂ lnEt[Mt+1|Rt+1]

∂ lnRt+1
= −σm,t

σs,t
×

σ2
s,t

σ2
s,t + σ2

i,t

. (11)
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Figure VI: E[M |R] in Macrofinance models. We plot the projected pricing kernel for the 10-th
and 90-th percentile of the conditional volatility of returns. The models of Campbell and Cochrane
(1999) and Bansal and Yaron (2004) are calibrated as in the original studies, whereas the model of
Gabaix (2012) is calibrated as in Dew-Becker et al. (2017).
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Proof. Joint normality implies that the log pricing kernel, conditional on the log re-

turn, is distributed as lnMt+1| lnRt+1 ∼ N (Et[lnMt+1| lnRt+1],Vart[lnMt+1| lnRt+1]),

where Et[lnMt+1| lnRt+1] = µm,t− σm,tσs,t
σ2
s,t+σ

2
i,t

(lnRt+1 − µr) and Vart[lnMt+1| lnRt+1] =

σ2
m,t

(
1− σ2

s,t

σ2
s,t+σ

2
i,t

)
. Using the moment generating function of a normal random

variable, the conditional expectation of the pricing kernel equals

Et[Mt+1|Rt+1] = exp

{
µm,t −

σm,tσs,t
σ2
s,t + σ2

i,t

(lnR− µr) + σ2
m,t

(
1−

σ2
s,t

σ2
s,t + σ2

i,t

)
/2

}
.

Taking logs and differentiating with respect to lnRt+1 yields (11). �

To understand the intuition behind Proposition 1, note that −σm,t
σs,t

equals the

slope of lnEt[Mt+1|Rt+1] in a world without idiosyncratic risk (σi,t = 0). In this

world, log returns and the log pricing kernel are perfectly correlated, the market

represents the only risk factor and, all else equal, an increase in return volatility

(due to σs,t) makes the projection flatter. The intuitive reason is that a drop in

the market is more indicative of high marginal utility (deteriorating macroeconomic

conditions) if it occurs during calm markets, rather than the middle of a recession.12

The second factor in (11),
σ2
s,t

σ2
s,t+σ

2
i,t

, equals the fraction of systematic return risk or,

equivalently, the squared conditional correlation between lnMt+1 and lnRt+1. It

adjusts for the fact that, in reality, the pricing kernel involves additional factors and

is therefore imperfectly correlated with the market. Intuitively, an increase in the

fraction of systematic return risk makes returns more informative about the pricing

kernel and therefore results in a steeper projection.

Proposition 1 shows that time-variation in the shape of Et[Mt+1|Rt+1] reflects

12Suppose, for example, that a -10% return corresponds to a two standard deviation event in
normal times and, as such, tends to coincide with a two standard deviation shock to the pricing
kernel – a fairly large macroeconomic shock. If return volatility doubles in recessions while pricing
kernel volatility remains unchanged, then a return of -10% corresponds to a one standard deviation
event and, as such, tends to coincide with a one standard deviation shock in the pricing kernel – a
smaller macroeconomic shock.
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the joint evolution of (σm,t, σs,t, σi,t) over time. These dynamics can take many

different forms, but several stylized cases are noteworthy. First, suppose that id-

iosyncratic risk is time-invariant (constant σi,t), while systematic risk increases less

than proportionally with σm,t.
13 In this case, which we’ll find to describe the habit

model, both fractions in equation (11) increase and Et[Mt+1|Rt+1] steepens when

return volatility rises (due to σs,t). Second, suppose that σm,t, σs,t, and σi,t are

all proportional to one another. In this case, which we’ll find to closely approxi-

mate the long-run risks model, both fractions in equation (11) are time-invariant

and the shape of Et[Mt+1|Rt+1] remains unchanged when return volatility rises.

Third, suppose that the volatility of returns evolves independently from σm,t. Then

an increase in return volatility due to σi,t will always make Et[Mt+1|Rt+1] flatter,

whereas an increase due to σs,t will make Et[Mt+1|Rt+1] flatter as long as σs,t > σi,t.

Even though the model of Gabaix (2012) is not lognormal, we show below that its

implications for time-variation in Et[Mt+1|Rt+1] are well-described by this scenario.

In what follows, we briefly review each of the aforementioned models and discuss

their implications for the dynamics of (σm,t, σs,t, σi,t).

B. Habits

B.1. Campbell and Cochrane (1999): Model statement

Aggregate consumption and dividends follow homoscedastic random walks,

∆ct+1 =g + σεc,t+1

∆dt+1 =g + σw

(
ρεc,t+1 +

√
1− ρ2εd,t+1

) (12)

where εc and εd are IID standard normal. Equation (12) implies that the correlation

between consumption and dividend growth rates equals ρ. Equity represents a claim

to the dividends in all future periods. The representative agent’s utility function is

Et

[ ∞∑
h=0

δh
(Ct+h −Xt+h)1−γ − 1

1− γ

]
, (13)

13This is the case, for example, if σs,t is an increasing and concave function of σm,t that goes
through the origin.
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where δ > 0 controls time preference and γ > 0 controls risk preference. Time

variation in the habit, Xt, is modelled via the surplus consumption ratio

St =
Ct −Xt

Ct
, (14)

whose logarithm, st = lnSt, evolves via the heteroscedastic AR(1) process,

st+1 =(1− φ)s̄+ φst + λ(st)σεc,t+1

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1 , st < smax

0 , st ≥ smax
,

(15)

where S̄ = σ
√
γ/(1− φ) and smax = s̄+ (1− S̄2)/2. The parameters s̄ = ln S̄ and

φ control the unconditional mean and persistence of st, whereas the function λ(st)

controls its sensitivity to consumption innovations.

B.2. Volatility Dynamics and E[M |R] in the Habit Model

The conditional variance of idiosyncratic shocks (εd,t+1) is time-invariant and given

by σ2
i,t = σ2

w(1 − ρ2). Systematic shocks (εc,t+1) are reflected in dividend growth

rates, and in time-variation in the price-dividend (P/D) ratio. Because the P/D

ratio has to be computed numerically, its conditional variance cannot be expressed

analytically. Schreindorfer (2023) shows that, for a numerically accurate solution,

the conditional variance of P/D looks drastically different from its counterpart in

Campbell and Cochrane (1999). We first explain the model mechanism for the

original (inaccurate) solution, which most readers are likely familiar with, and then

point out what changes when the model is solved accurately. The dashed line in

the top-left panel of Figure VII shows that, for the original solution, the conditional

variance of systematic shocks, σ2
s,t, is a concave and monotonically increasing func-

tion of σ2
m,t.

14 Proposition 1 implies that, as a result, a rise in the volatility of

returns (due to σs,t) makes E[M |R] steeper, rather than flatter, as in the data.

14Because the pricing kernel, lnMt+1 = ln δ − γ(∆ct+1 + ∆st+1) is exogenous, its conditional
variance is not affected by the numerical solution. It is straightforward to show that σ2

m,t =
γ(1− φ)(1 + 2s̄)− 2γ(1− φ)st.
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Figure VII: Sources of time-variation in E[M |R]. We plot the conditional variances of sys-
tematic and idiosyncratic return shocks as functions of the pricing kernel’s conditional variance.
Proposition 1 connects these moments to the shape of E[M |R]. The models of Campbell and
Cochrane (1999) and Bansal and Yaron (2004) are calibrated as in the original studies, whereas the
model of Gabaix (2012) is calibrated as in Dew-Becker et al. (2017).
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To see why these volatility dynamics are essential for the habit mechanism, note

that a sequence of adverse consumption shocks leads to a decrease in st and an

increase in σm,t. This raises risk aversion and decreases the P/D ratio. Since σs,t

increases at the same time, the model captures (i) the countercyclical nature of stock

market volatility and (ii) the “leverage effect”, i.e., the negative correlation between

changes in volatility and contemporaneous returns (Black 1976), and (iii) because

the simultaneous rise in return volatility and σm,t induces a large rise in risk premia,

the model rationalizes the long-horizon predictability of excess returns. The habit

model’s counterfactual implications for time-variation in E[M |R] therefore result

directly from its core mechanism for dynamic asset pricing facts.

For the accurate model solution, σ2
s,t is a hump-shaped, rather than monoton-

ically increasing, function of σ2
m,t, as shown in Figure VII. This alters the model’s

predictions in several ways relative to the original solution. First, during recessions

(states of high σ2
m,t), a further increase in σm,t decreases σs,t and therefore decreases

the conditional volatility of returns. When solved accurately, the habit model is

therefore no longer consistent with the fact that stock market volatility spikes dur-

ing recessions or with the leverage effect (see Schreindorfer 2023 for more detail).

Second, states of low return volatility (low σs,t) can be associated with either low or

high values of σm,t for the accurate model solution, and hence with either a flat or

steep E[M |R] curve. Probabilistically, however, values around the 10-th percentile

of return volatility are more than 100,000 times as likely to coincide with low values

of σm and a flat E[M |R] curve than with high values of σm and a steep E[M |R]

curve. Even for the accurate solution, for which we depict E[M |R] in Figure VI,

the habit mechanism for time-varying volatility therefore remains inconsistent with

our empirical evidence.
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C. Recursive Utility and Long-run Risks

C.1. Bansal and Yaron (2004): Model statement

The representative agent has Epstein-Zin utility, calibrated to imply a preference

for the early resolution of uncertainty (EIS>1/RRA), and is endowed with

∆ct+1 =g + xt + σtεt+1

∆dt+1 =g + φxt + ϕdσtεd,t+1

xt+1 =ρxt + ϕeσtεx,t+1

σ2
t+1 =σ2 + ν1(σ2

t − σ2) + σwεσ,t+1

where (εt+1, εd,t+1, εx,t+1εσ,t+1)
IID∼ N(0, 1). The “long run risks” xt and σt gener-

ate persistent variation in the conditional mean and volatility of consumption and

dividend growth rates. In the following, we illustrate the model’s implications for

volatility dynamics based on the log-linearized solution, which implies conditional

lognormality. We refer interested readers to Bansal and Yaron (2004) for details on

the solution coefficients (A0, A1, A2) and (A0m, A1m, A2m).

C.2. Volatility Dynamics and E[M |R] in the Long-run Risks Model

The conditional variance of idiosyncratic shocks (εd,t+1) is proportional to σ2
t and

given by σ2
i,t = ϕ2

dσ
2
t . Systematic return shocks (εx,t+1 and εσ,t+1) are reflected in

the P/D ratio. Based on the model’s log-linearized solution ln(Pt/Dt) = A0m +

A1mxt+1 + A2mσ
2
t+1, it is straightforward to show that the conditional variance of

systematic risk is linear in σ2
t ,

σ2
s,t = A2

2mσ
2
w +A2

1mϕ
2
eσ

2
t (16)

as is the conditional variance of the log pricing kernel,15

σ2
m,t = (θ − 1)2κ2

1A
2
2σ

2
w +

[
((θ − 1)− θ/ψ)2 + ((θ − 1)κ1A1ϕe)

2
]
σ2
t (17)

15The log pricing kernel equals lnMt+1 = θ ln δ − θ
ψ

∆ct+1 + (θ − 1)ra,t+1. To derive (17), we
substitute for the log-linearized return on wealth, ra,t+1 = κ0 +κ1wct+1−wct + ∆ct+1, replace the
log wealth consumption ratio by wct+1 = A0 + A1x

2
t+1 + A2σ

2
t+1, and then take the conditional

variance.
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For Bansal and Yaron’s calibration, the intercepts of σ2
s and σ2

m are both close to

zero, and σ2
m,t, σ

2
s,t, and σ2

i,t are approximately proportional to one another. This

proportionality is illustrated in the top-right panel of Figure VII and it explains, via

Proposition 1, why the shape of E[M |R] is time-invariant in the model.

The positive comovement between σ2
m,t and σ2

s,t is central to the long-run risks

mechanism. As in the habit model, it implies that elevated stock market volatil-

ity (due to σs,t) coincides with a large equity premium and a low P/D ratio. The

long-run risks model therefore explains the negative correlation between volatility

innovations and contemporaneous returns, as well as the long-horizon predictabil-

ity of excess returns. Additionally, because Epstein-Zin preferences imply aversion

against heteroscedasticity in xt, a positive realization of εσ,t increases the pricing

kernel and lowers P/D (contributing to the equity premium), while also increasing

σ2
m,t and σ2

s,t. Covariation between σ2
m,t and σ2

s,t is therefore a byproduct of how the

model generates the equity premium. Table 5 in Bansal and Yaron (2004) shows

that about 40% of the pricing kernel’s variance, and hence about 40% of the equity

premium, is attributable to the time-varying volatility channel. Positive comove-

ment between σ2
m,t and σ2

s,t is therefore essential for the long-run risks model’s main

empirical predictions.

The fact that σ2
i,t covaries with σ2

m,t and σ2
s,t is not important, because the long-

run risks factor σ2
t affects P/D primarily by controlling the conditional volatility of

xt, not by controlling the conditional volatility of consumption and dividend growth

rates. If consumption and dividend growth rates were homoscedastic, σ2
i,t would be

time-invariant and E[M |R] would behave as in the Campbell-Cochrane model, but

the model’s asset pricing implications would remain nearly unchanged.16 Obviously,

this change would remove the model further from explaining our empirical evidence.

16To confirm this assessment, we solved the model with homoscedastic consumption and dividend
growth rates by replacing σt by σ (the square root of the unconditional mean of σ2

t ) in the equations
for ∆ct+1 and ∆dt+1, while maintaining the time-varying σt in the equation for xt+1. Based on
a long model simulation, the mean/std/AC1 of the annual (time-aggregated) log P/D ratio equal
3.04/0.18/0.69 for both the heteroscedastic and homoscedastic versions of the model, whereas the
annual log equity return has a mean/std/AC1 of 6.68/16.62/0.02 in the heteroscedastic model and
6.69/16.73/0.02 in the homoscedastic model.
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C.3. Related Recursive Utility Models

The online appendix examines a number of related models with recursive preferences

and persistent state variables. First, we consider Drechsler and Yaron (2011), who

augment the long-run risks model with jumps in xt and σ2
t and a second volatility

factor. These changes result in skewed returns and a better fit to volatility moments,

but don’t alter the model’s main economic mechanism. We find that they also have

little effect on E[M |R], which remains close to time-invariant.

Second, we consider Wachter (2013), who augments the rare disaster model of

Rietz (1988) and Barro (2006) with recursive utility and persistent variation in the

disaster probability, which is modelled as a CIR process. The CIR process implies

that a rise in the probability of disasters not only lowers expected consumption

growth, but also increases the conditional volatility of expected consumption growth.

Hence, Wachter essentially fuses Bansal and Yaron’s xt and σ2
t into a singe state

variable. As in the original long-run risks model, σ2
m,t and σ2

s,t are approximately

proportional to one another and the E[M |R] curve is time-invariant as a result.

Lastly, we consider Constantinides and Ghosh (2017), who propose a quantitative

implementation of the Constantinides and Duffie (1996) mechanism. Their model

features recursive preferences and a persistent state that simultaneously controls

time-variation in (i) the higher moments of households’ idiosyncratic income shocks

and (ii) the conditional mean of aggregate dividend growth. The state is modelled

as an autoregressive Gamma process, which implies, similar to the CIR process in

Wachter (2013), that the state’s volatility increases in its level. When household risk

rises and increases σ2
m,t, the conditional mean of dividends simultaneously becomes

more volatile, which increases the volatility of P/D and therefore σ2
s,t. Once again,

this mechanism implies that σ2
m,t and σ2

s,t are approximately proportional to one

another and that the E[M |R] curve is time-invariant as a result.

These examples illustrate that it is the long-run risks mechanism for time-varying

volatility, rather than the details of its implementation in Bansal and Yaron (2004),

that lead to the models’ inconsistency with the observed variation in E[M |R].
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D. Time-varying Disaster Resilience

D.1. Gabaix (2012): Model statement

We consider the version of Gabaix’s (2012) time-varying disaster risk model in Dew-

Becker et al. (2017).17 The representative agent has time-separable power utility

and is endowed with

∆ct+1 =g + σεt+1 + ξt+1Jt+1

∆dt+1 =g + λσεt+1 − Ltξt+1

Lt+1 =(1− ρL)L̄+ ρLLt + σLεL,t+1

where εt+1
IID∼ N(0, 1) captures small consumption shocks, ξt+1

IID∼ Bernoulli(pJ)

is a disaster indicator, and Jt+1
IID∼ N(EJ , V

2
J ) is the disaster size. The recovery

rate of dividends, Lt, follows an autoregressive process with normal innovations,

εL,t+1
IID∼ N(0, 1). Hence, consumption disasters lead to a large drop in dividends

if they occur in periods with high Lt and a small drop in dividends if they occur

in periods with high Lt. Different from the model of Wachter (2013), but as in

the original disaster risk model of Rietz (1988) and Barro (2006), the probability of

disasters, pJ , is assumed to be constant.

D.2. Volatility Dynamics and E[M |R] in the Rare Disaster Model

Conditional on the model’s state variable Lt, dividends are only exposed to sys-

tematic shocks (εt+1 and ξt+1). Lt controls the conditional variance of systematic

shocks, σ2
s,t = Vart[∆dt+1] = λ2σ2 + L2

t pJ(1 − pJ). Because Lt evolves indepen-

dent from consumption (and the pricing kernel), εL,t+1 represents an idiosyncratic

shock that affects returns via the P/D ratio. The variance of idiosyncratic returns,

σ2
i,t = Vart[ln(Pt+1/Dt+1)], has to be computed numerically.

17Dew-Becker et al.’s version of the model adds Gaussian innovations to consumption growth
(which is constant absent disasters in the model’s original version), it assumes a normally distributed
(rather than constant) disaster size, and it specifies the recovery rate of dividends as an autoregres-
sive (rather than linearity generating) process. These modifications do not alter the model’s basic
economics, but result in a pricing kernel that is a continuous (rather than discontinuous) function
of the model’s state. We follow Dew-Becker et al.’s calibration of the model.
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What is unique about Gabaix’s model is that the volatility of returns evolves

independently from the pricing kernel. This feature implies that changes in return

volatility are not accompanied by changes in σm,t, which is time-invariant because

the pricing kernel is IID. Proposition 1 shows that, under lognormality, an increase in

return volatility that is not accompanied by a change in σm,t makes E[M |R] flatter,

as in the data. While Gabaix’ model is not lognormal, this mechanism nevertheless

appears to describe its implications for E[M |R] well.

E. Discussion

As Gabaix’ model shows, one explanation for our empirical finding is that stock

market volatility evolves independently from the pricing kernel. This explanation

is consistent with empirical evidence in Dew-Becker et al. (2017), who show that

shocks to expected (as opposed to realized) stock market variance command no

risk premium, as well as empirical evidence in Jurado et al. (2015), who show that

stock market volatility is only weakly correlated with macroeconomic uncertainty

(a plausible driver of pricing kernel volatility).

Two additional pints are worth making. First, the fact that Mt+1 is IID in

Gabaix’ model is not important for its ability to rationalize our evidence. What

matters is that the pricing kernel’s conditional variance σ2
m,t does not comove with

the conditional variance of returns, as one can see from Proposition 1. Second, what

matters for the model’s ability to explain our evidence is not that shocks to the vari-

ance of returns are independent from Mt+1 (which is important for replicating the

evidence in Dew-Becker et al.), but rather that shocks to the variance of returns

are independent from shocks to the variance of the pricing kernel. This is a subtle

but important distinction. It is conceivable that shocks to return variance affect the

realized value of the pricing kernel without altering its conditional variance, which

would rationalize our evidence but not that of Dew-Becker et al. (2017). Assum-

ing that the variance of returns is independent of both Mt+1 and its conditional

moments, as in Gabaix’s model, is an intuitive explanation for both findings.
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IV. Conclusion

Option markets provide us with valuable information to assess how the pricing of

stock market risks varies over time. We show that negative returns are substantially

more painful to investors when they occur in periods of low stock market volatility,

which is reflected in a steeper projected pricing kernel and larger (negative) risk

premia on put options. This evidence provides a useful diagnostic test for asset

pricing models, which routinely assume difficult-to-measure dynamics in preferences

and fundamentals to rationalize asset prices. We show that many popular models

require counterfactual dynamics of the pricing kernel to explain asset price dynamics,

including the countercyclical nature of volatility and long-horizon predictability of

excess returns.

We trace the source of the discrepancy of models relative to the data back to

the joint dynamics of returns and pricing kernel. Our Proposition 1 shows that the

observed variation in the projected pricing kernel is consistent with return volatility

evolving close to independently from the volatility of the pricing kernel. We find this

mechanism to be present in the model of Gabaix (2012), and hence the model is well

in line with our empirical evidence. Our theoretical finding is also supported by prior

empirical evidence. In particular, Jurado et al. (2015) show that macroeconomic

uncertainty is considerably more persistent and only weakly correlated with return

volatility. Additionally, they show that an increase in macroeconomic uncertainty

is associated with a decline in future economic activity, whereas Berger et al. (2020)

show that the same is not true for an increase in expected stock market volatility.

It therefore makes sense that market volatility is not related to investors’ marginal

utility.
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Appendix

This appendix explains how we extract risk-neutral distributions from option prices

and details the time series model for conditional volatility.

A. Extracting Risk-neutral Densities from Options

We follow the methodology in Beason and Schreindorfer (2022) to extract risk-

neutral densities from option prices. Breeden and Litzenberger (1978) show that

the risk-neutral PDF of the future price level St+1 is given by

f∗t (St+1) = Rft ×
∂2Pt(K)

∂K2

∣∣∣∣
K=St+1

, (A.1)

where P is the price of a put option and K the associated strike price. The risk-

neutral PDF of ex-dividend returns follows from the change of variables Rt+1 = St+1

St

as f∗t (Rt+1) = St × f∗t (St+1). To recover risk-neutral densities from options based

on (A.1), it is necessary to observe option prices for the desired maturity and a

continuum of strikes. We generate these prices via interpolation and extrapolation

of observed quotes as follows. For each day in the sample, we use Black’s formula

(a version of Black and Scholes 1973) to convert observed option prices to implied

volatility (IV) units, fit an interpolant to them, evaluate the interpolant at a ma-

turity of 30 calendar days and a fine grid of strike prices, map interpolated IVs

back to option prices, and finally compute f∗t via finite differences based on (A.1).

Importantly, this approach does not assume the validity of the Black-Scholes model

because Black’s formula is merely used to map back-and-forth between two spaces.

The mapping relies on LIBOR rates that are linearly interpolated to the options’

maturities and forward prices for the underlying. The remainder of this appendix

details the interpolation of IVs.
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The SVI Method

We interpolate IVs based on Jim Gatheral’s SVI method.18 SVI describes implied

variance (the square of IV) for a given maturity τ with the function

σ2
BSM (x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
, (A.2)

where x = log(K/Ft,τ ) is the option’s log-moneyness, Ft,τ the forward price for ma-

turity τ , and a, b, ρ,m, σ are parameters. The method is widely used in financial

institutions because it is parsimonious, yet known to provide a very good approxi-

mation to IVs, both in the data and in fully-specified option pricing models.

We make two modifications to the basic SVI method to allow for interpolation

in the maturity, in addition to the moneyness dimension. First, we parameterize

σ2
BSM as a function of standardized moneyness, κ ≡ log(K/Ft,τ )

V IXt/100×
√
τ
, rather than x, to

limit the extent to which the shape of the IV curve varies with maturity. Second,

we specify linear functions of τ for the five coefficients, e.g.,

a = a0 + a1τ, (A.3)

and similarly for (b, ρ,m, σ). Jointly, (A.2) and (A.3) describe IVs as a bivariate

function of κ and τ that is parameterized by θ ≡ (a0, a1, b0, b1, ρ0, ρ1,m0,m1, σ0, σ1).

An important criterion for the successful interpolation and extrapolation of IVs

is that the corresponding option prices respect theoretical no arbitrage restrictions,

i.e. that they are (i) non-negative, (ii) monotonic in K, (iii) convex in K, and (iv)

imply (via Equation A.1) a density f∗t (R) that integrates to one. We impose these

constraints in the estimation as further described below.

Data and Implementation

We clean the options data by removing observations that (i) violate the static no-

arbitrage bounds P ≤ K/Rf or C ≤ S, (ii) have a bthbid quote of zero, (iii) have the

18SVI was devised at Merrill Lynch and disseminated publicly by Gatheral (2004). See Gatheral
(2006) for a textbook treatment and Berger et al. (2020) for a recent application in economics.
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CBOE’s error code 999 for ask quotes or 998 for bid quotes, (iv) have non-positive

bid-ask spreads, (v) have midquotes less than $0.50, (vi) are singles (a call quote

without a matching put quote or vice versa), (vii) are PM settled, or (viii) have

IVs less than 2% or more than 200%. To detect any additional outliers, we fit a

linear function κ and τ to IVs on each date, and remove observations that are highly

influential based on their Cook’s distance (a common statistical metric for detecting

outliers). Finally, we restrict the sample to puts with a standardized moneyness

below 0.5, calls with a standardized moneyness above -0.5, and maturities between

8 and 120 calendar days, i.e. we exclude long-term and in-the-money options.

For each day in the sample, we estimate the SVI parameter vector θ by mini-

mizing the root mean squared error between observed IVs and the SVI interpolant,

θ̂t = argmin
θ

√√√√ 1

Nt

Nt∑
i=1

[σBSM,t,i − σBSM (κt,i, τt,i; θ)]
2, (A.4)

where Nt is the number of observations on day t. We use a particle swarm algorithm

to minimize the objective function and discard parameters for which SVI-implied

prices violate no arbitrage constraints. The positivity, monotonicity, and convexity

of option prices are checked on a bivariate grid for κ and τ .19 At every maturity in

the τ -grid, we integrate f∗t over the κ-region and discard parameters for which these

integrals do not fall within (a numerical error tolerance of) 1 basis point of one.

The fit to IVs results in an average (median) R2 of 98.8% (99.6%) across the

7,556 trading days in our sample.

B. Conditional Volatility Estimation

Our implementation of the HAR (Heterogeneous AR) model of Corsi (2009) is:

RV
(21)
t = α+ βmRV

(21)
t−21 + βwRV

(5)
t−21 + βdRV

(1)
t−21 + εt, (B.1)

19The κ-grid includes the integers from -20 to -11, 61 equally-spaced points between -10 and 5,
and the integers from 6 to 10, for a total of 76 points. The width of this grid ensures that even
extrapolated option prices are arbitrage free. The τ -grid is equally-spaced with 12 points between
10 and 120 days to maturity.
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where the realized volatility RV
(1)
t = (

∑N
i=1 r

2
i )

0.5 denotes the square root of the sum

of N squared intra-day log returns of day t, and RV
(h)
t = ( 1

h

∑h
j=0RV

(1)
t−j)

0.5. In the

model, the past week RV
(5)
t and the past month RV

(21)
t represent the long-memory

feature of the volatility model. We calculate RV based on squared five-minute log

returns, which is a popular choice, as it presents a good trade-off between reducing

noise (high sampling frequency) and reducing bias due to micro-structure effects (low

sampling frequency). We sub-sample our estimator every minute, which reduces the

noise without any bias, and add the squared log overnight return to each intra-daily

variance estimate.

The intra-day returns are based on high frequency future prices for the S&P 500

index obtained from Tick Data Inc. In 1997, the CME introduced the so-called mini

future (symbol: ES). Over time, the standard “large” futures contract (symbol: SP)

lost market share to the mini, and eventually was discontinued in 2021. Since the

trading volume of the mini (adjusted for the smaller multiplier) overtook the large

contract during the year 2002, we switch our RV calculation from the large contract

to the mini in 2003.

Our σt volatility forecasts are all out-of-sample. For this, on day t, we use all

information available up to date t− 21 trading days, estimate the model with OLS,

and then forecast volatility using day t information only. This is done daily in an

expanding window fashion. We start the sample in 1988, in order to have at least

two years as burn-in for the first forecast on Jan 02, 1990. We note that our model

forecasts volatility very well with an out-of-sample R2
OOS = 60.4%.
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