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Abstract

We evaluate the welfare consequences of mandates to invest in sustainable corporations,
defined as those that spend to mitigate a climate disaster externality. These mandates
incentivize otherwise ex-ante identical unsustainable firms to become sustainable for a
lower cost of capital. Despite being a dynamic stochastic general equilibrium model,
a simple formula shows that the cost-of-capital wedge between sustainable and unsus-
tainable firms is equal to a sustainable firm’s mitigation spending divided by its market
valuation. A firm’s mitigation effectively lowers its productivity (a tax proportional
to its market value) and is compensated by a lower cost of capital. Sustainable firms
invest and accumulate capital at the same rate as unsustainable firms. Using global
warming projections, a mandate of 82% of firms spending 9.6% of their output on mit-
igation for a 1% cost-of-capital wedge yields the first-best outcome. Welfare is nearly
20% higher while Tobin’s q is only modestly lower compared to the competitive equi-
librium because mitigation, while costly, reduces aggregate risk. Mandates in practice
are an order of magnitude too small.
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1 Introduction

Mandates to invest in sustainable companies, defined as those that spend to address the

negative consequences of global warming, rose dramatically in the recent decade. Recent

estimates have 38% of assets under management undergoing some form of sustainability

screening (US SIF Foundation January 2019). This rise has been largely driven by sovereign

wealth funds or pension plans who often times have legal restrictions imposed on their asset

holdings by governments or stakeholders.1 Most of these mandates are implemented as

passive screens, whereby a fraction of stock portfolios are restricted to invest in companies

that meet certain environmental, social, and governance (ESG) guidelines.

Sustainability guidelines pertain to not just companies’ carbon footprints but also other

types of spending to mitigate a variety of climate-related disasters. For instance, in Septem-

ber 2019, a UN climate resilience initiative focused on engaging investors and firms to fund

mitigation of the negative consequences of global warming for wildfires and sea level rise,

which endangers much of the world even today. As part of this initiative, 230 investors

managing $16.2 trillion dollars signed on to divest from companies whose supply-chains con-

tribute to fires in the Amazon and Indonesia.

One important underlying premise for such mandates is that competitive economies fail

to internalize externalities associated with global warming. These mandates are meant to

incentivize companies to mitigate externalities associated with climate change through cap-

ital market boycotts. Boycotts (Arrow (1972) and Becker (2010)), particularly implemented

via social norms (Akerlof (1980) and Romer (1984)), can affect prices in many markets; in

capital markets such boycotts can generate market segmentation which affects firm cost of

capital (Merton (1987)).

In this paper, we evaluate the welfare consequences of these mandates by introducing a

stock portfolio restriction for the representative investor in a dynamic competitive economy.

Our model addresses the following questions. What should be sustainable portfolio qualifi-

cation criteria? How large do mandates have to be to reach the first-best outcome? What is

1For instance, the Norwegian sovereign wealth fund is forbidden by parliament from investing in certain
companies that violate certain sustainability criteria.

1



the size of the cost-of-capital wedge between sustainable versus unsustainable firms? What

is the impact of these mandates on capital accumulation and social welfare? What are the

implications for equilibrium interest rates, risk premia, and aggregate stock market value?

We start with a continuous-time economy where output is determined by an AK produc-

tion technology and convex capital adjustment costs give rise to a value for capital (Tobin’s

average q). The economy is buffeted by the Poisson arrival of weather disasters that lead to

fat-tailed damages to capital stock.2 Climate change increases the arrival rate and damages

of these disasters (National Academy of Sciences (2016)).3 More frequent disasters lead to

significant welfare losses (e.g., Rietz (1988), Barro (2006), Weitzman (2009), and Pindyck

and Wang (2013)) for households with non-expected utility as in Epstein and Zin (1989) and

Weil (1990).

Mitigation reduces the fat-tailedness of damages of these disasters in the economy. Firm

productivity is reduced as a result of this spending, be it reducing carbon footprints or other

forms of mitigation. But the benefits of this mitigation only affects market price of risk

which firms take as given. Hence, there is under-mitigation, i.e. a market failure, in the

competitive economy and a tax on capital is needed to fund mitigation spending (Hong,

Wang and Yang (2020)). The risk preference of the representative investor generates a

substantial willingness-to-pay for mitigation and hence a sizeable tax on capital similar to

how it generates a high social cost of carbon in integrated assessment models of emissions

curtailment (Nordhaus (2017), Golosov, Hassler, Krusell and Tsyviski (2014)).4

To be included in the investor’s sustainable portfolio, otherwise ex-ante identical unsus-

tainable firms have to spend a minimum amount on mitigation which they otherwise would

not due to externalities. The cost of capital and firm value for sustainable and unsustain-

able firms are endogenously determined so as to leave value maximizing firms indifferent

between being sustainable or not, i.e., the Tobin’s q or stock price is the same for all firms

2The percentage losses of capital stock due to jump arrivals follow a Pareto distribution and are i.i.d.
across arrivals (Gabaix, 2009).

3For instance, climate models point to increased frequency and damage from hurricanes that make landfall
(Grinsted, Ditlevsen, and Christensen (2019), Kossin et.al. (2020)). Similarly, the wildfires in the Western
US states are also linked to climate change (Abatzoglou and Williams (2016)).

4See, e.g., Cai and Lontzek (2019), Daniel, Litterman and Wagner (2019) for recent contributions.
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in equilibrium.

Despite the model capturing rich dynamics and ex-post heterogeneity, the equilibrium

solution is intuitive and can be described in closed form. Since firms have the same Tobin’s

q, the investment and growth paths of both sustainable and unsustainable firms are identical

(i.e., path by path) over time. A firm’s average q is given by a Gordon Growth formula:

sustainable firms have lower cashflows to pay out (i.e. a lower numerator) due to mitigation

spending but have a smaller denominator due to a lower cost of capital (i.e. expected

return required by the representative investor) compared to unsustainable firms. The cash-

flow effect and the discount-rate effect exactly offset each other leaving all firms indifferent

between being a sustainable and unsustainable firm.

We show that the equilibrium cost-of-capital wedge between sustainable and unsustain-

able firms is equal to a sustainable firm’s mitigation spending divided by its market valuation.

In other words, a fraction of wealth is boycotting unsustainable firms leaving them with a

higher cost of capital compared to sustainable ones. The lower cost of capital for sustain-

able firms subsidizes their mitigation spending, which they would have otherwise invested or

distributed to shareholders. The benefits of this mitigation accrues to the entire economy.

Importantly, the Gordon Growth formula also depends on risk-free rates, risk premium, and

growth rates, all of which are determined in equilibrium.

We then use our model to assess how sustainable investing might move the competitive-

economy outcomes closer to the first-best given global warming projections. Global warming

projections are typically given as damage to economic growth assuming business as usual,

i.e. no mitigation, for a given path of higher temperatures. We take projections from a

leading study by Burke, Hsiang, and Miguel (2015) and map their damage projections to

our disaster model. Our definition of a weather related climate disaster is similar to rare

disasters based on historical data on the fat-tails of losses to capital stock due to wars and

depressions as in Barro and Jin (2011). We then use climate change projections of damage

to economic growth to back out a disaster arrival rate. Absent any mitigation, business-

as-usual projections imply that a climate disaster, similar in size to historical consumption

disasters, is expected once in every seven years.
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We target the other parameters of our model to historical moments following the macro-

finance literature (see, e.g., Bansal and Yaron (2004)). The mitigation technology is then set

so that it is not optimal to spend on mitigation in the pre-climate change regime. That is,

we consider how much optimal mitigation a planner would choose in an economy in which

climate projections damage economic growth holding fixed other parameters. We obtain an

estimate of aggregate mitigation spending of around 2% of the aggregate capital stock and

or 8% of GDP each year.

Larger mandates lead to more unsustainable firms becoming sustainable. As mandates

become larger, aggregate mitigation spending increases and aggregate investment decreases,

therefore moving the competitive economy closer to the first-best solution. When mandates

are small, few firms qualify in equilibrium and each have to spend more of their capital on

mitigation and receive a large cost of capital subsidy. The smallest mandate that achieves

first-best is 13.6% of firms spending 56% of output on mitigation for a 6.1% cost-of-capital

wedge. In practice, it is unlikely that firms will devote so much of their resources to mitigation

for a variety of governance reasons.

But when mandates are large, more firms qualify in equilibrium and each have to spend

less of their capital on mitigation and receive a smaller cost-of-capital subsidy. An 82%

mandate where firms spend around 9.6% for mitigation for a cost-of-capital wedge of 1%

lower also achieves the first-best outcome. These figures seem more plausible. Hence, to

achieve first-best, there has to be large mandates so that each firm is spending a more

realistic fraction of their resources on mitigation.

In practice, sustainable firms are currently spending on the order of 1-2% of output.

Even given the growth in these mandates the last decade, i.e. around 38% of assets under

management undergo some type of screening, sustainable finance mandates have to be around

an order of magnitude larger to tackle society’s significant global warming challenges. This

leaves significant welfare gains on the table since competitive markets absent mandates

under-spend on risk mitigation and over-invest in capital accumulation.

Based on the global warming projections, welfare is nearly 20% higher while Tobin’s q

is only modestly lower compared to the competitive equilibrium. With sustainable finance
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mandates, all firms grow at slower rates and have lower stock prices. But risk premia are

also lower because mitigation reduces aggregate risks, thereby offsetting the direct effects of

these mandates on firm investment and stock prices. Interest rates are also higher in our

calibration with sustainable finance mandates as the force of aggregate risk reduction, which

tends to increase interest rates, is stronger than the opposing force, which lowers productivity

and investment, has on interest rates.

Our paper is most related to Heinkel, Kraus, and Zechner (2001), who are the first to

consider a similar set of issues using a static constant absolute risk aversion (CARA) frame-

work in which interest rates are exogenous and brown firms can become green by paying a

fixed cost. To conduct welfare calculations, one needs an equilibrium model and capital ac-

cumulation which our dynamic formulation provides. But by and large, the literature on the

effects of sustainability has otherwise focused on cross-sectional asset pricing implications.5

Hong and Kacperczyk (2009) estimate that the cost of capital for sin stocks such as hotels

with casinos and tobacco stocks is higher by 1.5% per annum than non-sin stocks in similar

industry groupings. This 1.5% cost-of-capital wedge is in line with our model’s prediction of

the equilibrium cost-of-capital wedge for a large mandate. Pastor, Stambaugh, and Taylor

(2020) also derive a cost-of-capital wedge in a static CARA asset pricing setting assuming

investors have non-pecuniary tastes for stock attributes.

Our paper proceeds as follows. In Section 2, we describe our model. In Section 3, we

provide the first-best outcome or planner’s solution. We then solve our sustainable finance

mandate model in Section 4. We calibrate our model in Section 5 to business-as-usual global

warming forecasts and calculate the main variables of interests. We conclude in Section 6.

2 Model

While mitigating climate disaster risk benefits the society, doing so is privately costly for

the firm. We model sustainable finance mandates as portfolio restrictions on the represen-

tative agent’s portfolio and examine the extent to which it encourages firms to provide risk

5A recent exception is Broccardo, Hart, and Zingales (2020) who evaluate the relative efficiency of capital
market boycotts versus engagement in achieving first-best outcomes.
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mitigation and quantify its implications for social welfare. We use a representative-agent

framework for expositional simplicity, where this agent can be interpreted as representing

both public (e.g., sovereign wealth funds) and private investors.

The mandate requires the agent to invest at least an α fraction of the entire aggregate

wealth in type-S firms, which have to spend at least a fraction m of its capital on mitigating

disaster risk. That is, on the demand side for financial assets, the representative agent holds

and invests the entire wealth of the economy between sustainable (S) firms, unsustainable

(U) firms, and the risk-free bonds. The risk-averse representative agent is required to meet

the sustainable investment mandate at all times when allocating assets. On the supply side,

a portfolio of S firms and a portfolio of U firms will arise endogenously in equilibrium, which

we refer to as S-portfolio and U -portfolio, respectively.

2.1 Firm Production, Capital Accumulation, and Disaster Shocks

The firm’s output at t, Yt, is proportional to its capital stock, Kt, which is the only factor

of production:

Yt = AKt , (1)

where A > 0 is a constant that defines productivity for all firms. This is a version of widely-

used AK models in macroeconomics and finance.6 All firms start with the same level of

initial capital stock K0 and have the same production and capital accumulation technology.

Additionally, they are subject to the same shocks (path by path).

That is, there is no idiosyncratic shock in our model. This simplifying assumption makes

our model tractable and allows us to focus on the impact of the investment mandate on

equilibrium asset pricing and resource allocation. Despite being identical in all aspects,

some firms choose to be sustainable while others remain unsustainable in equilibrium.

6There are pros and cons of using an AK model for our climate-change analysis. For analyzing weather
disasters such as hurricanes which have been shown to have permanent effects on capital and output, an AK
model setup is natural. But an AK setup might miss important features of growth rate dynamics in other
settings (Jones (1995)).
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Investment and Capital Accumulation. Let It and Xt denote the firm’s investment

and mitigation spending, respectively. As in Pindyck and Wang (2013), the firm’s capital

stock, Kt, evolves as:

dKt = Φ(It−, Kt−)dt+ σKt−dBt − (1− Z)Kt−dJt . (2)

As in Lucas and Prescott (1971) and Jerrmann (1998), we assume that Φ(I,K), the first

term in (2), is homogeneous of degree one in I and K and, thus, can be written as

Φ(I,K) = φ(i)K , (3)

where i = I/K is the firm’s investment-capital ratio and φ( · ) is increasing and concave.

This specification captures the idea that changing capital stock rapidly is more costly than

changing it slowly. As a result, installed capital earns rents in equilibrium so that Tobin’s

q, the ratio between the value and the replacement cost of capital, exceeds one.

The second term captures continuous shocks to capital, where Bt is a standard Brownian

motion and the parameter σ is the diffusion volatility (for the capital stock growth). This Bt
is the source of shocks for the standard AK models in macroeconomics. The firm’s capital

stock is also subject to an aggregate jump shock. We capture this jump effect via the third

term, where Jt is a (pure) jump process with a constant arrival rate, which we denote by

λ > 0. To emphasize the timing of potential jumps, we use t− to denote the pre-jump time

so that a discrete jump may or may not arrive at t. Examples of jumps include hurricanes

or wildfires that destroy physical and housing capital stock.

When a jump arrives (dJt = 1), it permanently destroys a stochastic fraction (1− Z) of

the firm’s capital stock Kt−, as Z is the recovery fraction where Z ∈ (0, 1). (For example,

if a shock destroyed 15 percent of capital stock, we would have Z = .85.) There is no limit

to the number of these jump shocks.7 If a jump does not arrive at t, i.e., dJt = 0, the third

term disappears.

7Stochastic fluctuations in the capital stock have been widely used in the growth literature with an AK
technology, but unlike the existing literature, we examine the economic effects of shocks to capital that
involve discrete (disaster) jumps.
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2.2 Mitigation and Externality

We use Ξt−(Z) and ξt−(Z) to denote the cumulative distribution function (cdf) and proba-

bility density function (pdf) at time t− for the recovery fraction, Z, conditional on a jump

arrival at t, respectively. We postulate that the cdf Ξt−(Z) and pdf ξt−(Z) depend on the

pre-jump aggregate mitigation spending Xt− and the aggregate capital stock Kt− in the

economy. Let xt− = Xt−/Kt−. We use boldfaced notations for aggregate variables.

To preserve our model’s homogeneity property, we assume that the cdf Ξt−(Z) and pdf

ξt−(Z) depend on mitigation spending purely via the pre-jump scaled aggregate mitigation

spending (xt−). That is, if we simultaneously double the aggregate mitigation spending

Xt− and aggregate capital stock Kt−, the cumulative distribution Ξt−(Z) is unchanged.

It is sometimes useful to make the dependence of Ξt−(Z) and ξt−(Z) on scaled aggregate

mitigation spending xt− explicit: Ξt−(Z) = Ξ(Z; xt−) and ξt−(Z) = ξ(Z; xt−).

As disaster shocks are aggregate and disaster damages are only curtailed by aggregate mit-

igation spending X, absent mandates or other incentive programs, firms have no incentives

to mitigate on their own as the economy is competitive and their own mitigation spendings

have no impact on the aggregate mitigation spending (Hong, Wang and Yang (2020)).

2.3 Sustainable Investment Mandates

Let 1St be an indicator function describing the status of a firm at t. To qualify as a sustainable

(S) firm at t, the firm has to spend at least Mt at t on disaster risk mitigation, which

contributes to the reduction of aggregate risk. That is, 1St = 1 if and only if the firm’s

mitigation spending Xt satisfies:

Xt ≥Mt . (4)

Otherwise, 1St = 0 and the firm is unsustainable (U).

To preserve our model’s homogeneity property, we assume that the mandated mitigation

spending is proportional to firm size Kt:

Mt = mtKt , (5)
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where mt is the minimal level of mitigation per unit of the firm’s capital stock to qualify

a firm to be sustainable. That is, it is cheaper for a firm (with smaller Kt) to qualify as a

sustainable firm. Later, we endogenize the S-firm qualification threshold, mt, to maximize

the representative agent’s utility.

The investment mandate α creates the inelastic demand for S firms. In equilibrium, the

remaining 1− α fraction is invested in the U -portfolio so that the agent has no investment

in the risk-free bonds in equilibrium.

2.4 Optimal Firm Mitigation

Each firm can choose to be either a sustainable (S) or a unsustainable firm (U). We assume

that a firm’s mitigation is observable and contractible. While spending on aggregate risk

mitigation yields no monetary payoff for the firm, doing so allows it to be included in the

S-portfolio.

A value-maximizing firm chooses whether to be sustainable or unsustainable depending

on which strategy yields a higher value. Let Qn
t denote the the market value of a type-n firm

at t, where n = {S, U}. By exploiting our model’s homogeneity property, we conjecture and

verify that the equilibrium value of a type-n firm at time t must satisfy:

Qn
t = qnKn

t , (6)

where qn is Tobin’s average q for a type n-firm.

In equilibrium, as mitigation spending has no direct benefit for the firm, if the firm

chooses to be U , i.e., 1St = 0, it will set Xt = 0. Moreover, even if a firm chooses to be a S

firm, it has no incentive to spend more than Mt, i.e., (4) always binds for a type-S firm.

As we later verify, the equilibrium expected rate of return for a type-n firm, which we

denote by rn, is constant. A type-n firm maximizes its present value:

max
In,Xn

E
(∫ ∞

0

e−r
ntCF n

t dt

)
(7)

subject to the standard transversality condition specified in the Appendix. In equation (7),

CF n
t is the firm’s cash flow at t, which is given by

CF S
t = AKS

t − ISt −XS
t and CFU

t = AKU
t − IUt , (8)
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as an unsustainable firm spends nothing on mitigation.

Since It and Xi are both proportional to Kt, spending on Xt effectively reduces the

productivity of firms. Hence, Xt can be broadly interpreted as various mitigatory activities

that reduce firm productivity including limiting carbon emissions or spending on other forms

of mitigation.

2.5 Dynamic Consumption and Asset Allocation

The representative agent makes all the consumption and asset allocation decisions. We

thus use individual and aggregate variables for the agent interchangeably. For example,

the aggregate wealth, Wt, is equal to the representative agent’s wealth, Wt. Similarly, the

aggregate consumption, Ct, is equal to the representative agent’s consumption, Ct.

The representative agent has the following investment opportunities: (a) the S portfolio

which includes all the sustainable firms; (b) the U portfolio which includes all other firms

that are unsustainable; (c) the risk-free asset that pays interest at a constant risk-free interest

rate r determined in equilibrium; and (d) actuarially fair insurance claims for disasters with

every possible recovery fraction Z (and also for diffusion shocks.)

Type-S and type-U portfolios. The S and U portfolios include all the S and U firms,

respectively. Let QS
t and QU

t denote the aggregate market value of the S portfolio firm and

the U portfolio at t, respectively. Similarly, Let DS
t and DU

t denote the aggregate dividend

of the S portfolio firm and the U portfolio at t, respectively.

We conjecture and then verify that the cum-dividend return for the type-n portfolio is

given by
dQn

t + Dn
t−dt

Qn
t−

= rndt+ σdBt − (1− Z) (dJt − λdt) , (9)

where rn is the endogenous constant expected cum-dividend return for a type-n firm in

equilibrium. In equation (9), the diffusion volatility is equal to σ as in equation (2). The

third term on the right side of equation (9) is a jump term capturing the effect of disasters

on return dynamics. Both the diffusion volatility and jump terms are martingales (and this
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is why rn is the expected return.) Note that the only difference between the S- and U -

portfolio is the expected return. The diffusion and jump terms are the same as those in the

capital evolution dynamics given in equation (2). We verify these equilibrium results in the

Appendix.

Disaster risk insurance (DIS). We define DIS as follows: a DIS for the survival fraction

in the interval (Z,Z + dZ) is a swap contract in which the buyer makes insurance payments

p(Z)dZ, where p(Z) is the equilibrium insurance premium payment, to the seller and in

exchange receives a lump-sum payoff if and only if a shock with survival fraction in (Z,Z+dZ)

occurs. That is, the buyer stops paying the seller if and only if the defined disaster event

occurs and then collects one unit of the consumption good as a payoff from the seller. The

DIS contract is priced at actuarially fairly terms so that investors earn zero profits.

Preferences. We use the Duffie and Epstein (1992) continuous-time version of the recur-

sive preferences developed by Epstein and Zin (1989) and Weil (1990), so that the represen-

tative agent has homothetic recursive preferences given by:

Vt = Et
[∫ ∞

t

f(Cs, Vs)ds

]
, (10)

where f(C, V ) is known as the normalized aggregator given by

f(C, V ) =
ρ

1− ψ−1
C1−ψ−1 − ((1− γ)V )ω

((1− γ)V )ω−1
. (11)

Here ρ is the rate of time preference, ψ the elasticity of intertemporal substitution (EIS), γ

the coefficient of relative risk aversion, and we let ω = (1 − ψ−1)/(1 − γ). Unlike expected

utility, recursive preferences as defined by (10) and (11) disentangle risk aversion from the

EIS. An important feature of these preferences is that the marginal benefit of consumption

is fC = ρC−ψ−1/[(1 − γ)V ]ω−1, which depends not only on current consumption but also

(through V ) on the expected trajectory of future consumption.

If γ = ψ−1 so that ω = 1, we have the standard constant-relative-risk-aversion (CRRA)

expected utility, represented by the additively separable aggregator:

f(C, V ) =
ρC1−γ

1− γ − ρ V. (12)
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This more flexible utility specification is widely used in asset pricing and macroeconomics for

at least two important reasons: 1) conceptually, risk aversion is very distinct from the EIS,

which this preference is able to capture; 2) quantitative and empirical fit with various asset

pricing facts are infeasible with standard CRRA utility but attainable with this recursive

utility, as shown by Bansal and Yaron (2004) and the large follow-up long-run risk literature.

We show that in our model, the EIS parameter plays an important role as well.

Wealth dynamics. Let Wt denote the representative agent’s wealth. Let HS
t and HU

t

denote the dollar amount invested in the S and U portfolio, respectively. Let Ht denote the

agent’s wealth allocated to the market portfolio at t. That is, Ht = HS
t + HU

t . The dollar

amount, (Wt − Ht) is the dollar amount invested in the risk-free asset. For disasters with

recovery fraction in (Z,Z + dZ), δt(Z)Wtdt gives the total demand for the DIS over time

period (t, t+ dt).

The agent accumulates wealth as:

dWt = r (Wt− −Ht−) dt+
(
rSHS

t− + rUHU
t−
)
dt+ σHt−dWt − (1− Z)Ht−(dJt − λdt)

−Ct−dt−
(∫ 1

0

δt−(Z)p(Z)dZ

)
Wt−dt+ δt−(Z)Wt−dJt . (13)

The first term in (13) is the interest income from savings in the risk-free asset, the second

term is the expected return from investing in the S and U portfolios. Note that the expected

returns are different: rS and rU for the S and U portfolios, respectively. The third and fourth

terms are the diffusion and jump martingale terms for the stock market portfolio. Note that

the stochastic (shock) components of the returns (diffusion and jumps) for the two portfolios

are identical path by path. The fifth term is the standard consumption outflow term. The

sixth term is the total DIS premium paid by the consumer before the arrival of disasters.

Note that this term captures the financial hedging cost. The last term describes the DIS

payments by the DIS seller to the household when a disaster occurs.

The total market capitalization of the economy, Qt, is given by

Qt = qSKS
t + qUKU

t . (14)
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Let πSt and πUt denote the fraction of total wealth Wt allocated to the S and U portfolio

at time t, respectively. That is, HS
t = πSt Ht, H

U
t = πUt Ht, and the remaining fraction

1−
(
πSt + πUt

)
of Wt is allocated to the risk-free asset.

In equilibrium, the investment mandate requires that the total capital investment in the

S portfolio has to be at least an α fraction of the total stock market capitalization Qt:

HS
t ≥ αQt . (15)

In equilibrium, the total stock market capitalization Qt depends on the mandate. We later

derive a closed-form expression for the relation between Qt and α.

Rewriting equation (13), we express the household’s wealth dynamics as:

dWt =
[
rWt− − Ct− +

(
πSt− · (rS − r) + πUt−(rU − r)

)
Wt−

]
dt−

(∫ 1

0

δt−(Z)p(Z)dZ

)
Wt−dt

+
(
πSt− + πUt−

)
Wt− [σdBt − (1− Z) (dJt − λdt)] + δt−(Z)Wt−dJt . (16)

Let Yt, Ct, It, and Xt denote the aggregate output, consumption, investment, and

mitigation spending, respectively. Adding across all type-S and U firms, we obtain the

aggregate resource constraint:

Yt = Ct + It + Xt . (17)

2.6 Competitive Equilibrium

We define the competitive equilibrium subject to the investment mandate as follows: (1)

the representative agent dynamically chooses consumption and asset allocation among the

S portfolio, the U portfolio, and the risk-free asset subject to the investment mandate given

in (15); (2) each firm chooses its status (S or U), and investment policy I to maximizes its

market value; (3) all firms that choose sustainable investment policies are included in the S

portfolio and all remaining firms are included in the U portfolio; and (4) all markets clear.

The market-clearing conditions include (i) the net supply of the risk-free asset is zero;

(ii) the representative agent’s demand for the S portfolio is equal to the total supply by

firms choosing to be sustainable; (iii) the representative agent’s demand for the U portfolio

is equal to the total supply by firms choosing to be brown; (iv) the net demand for the DIS of
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each possible recovery fraction Z is zero; and (v) the goods market clears, i.e., the resource

constraint given in (20) holds.

Because the risk-free asset and all DIS contracts are in zero net supply, the agent’s entire

wealth Wt is invested in the S and U portfolios.

2.7 Optimal Investment Mandate

Finally, we endogenize the mandate, characterized by the scaled mitigation threshold Mt =

mtKt, for a firm to qualify as a sustainable firm. Specifically, at time 0, the planner announces

{Mt; t ≥ 0} and commits to the announcement with the goal of maximizing the representative

agent’s utility given in equation (10) taking into account that the representative agent and

firms take the mandate as given and optimize in competitive equilibrium.8 Since no firm

spends more than Mt to qualify as an S firm, the equilibrium aggregate mitigation spending

satisfies:

Xt = αMt. (18)

3 First-Best: Planner’s Solution

Before solving the model for the ESG economy, we first state the first-best solution where

the planner chooses aggregate C, I, and X to maximize the representative agent’s utility

defined earlier.

As our model features the homogeneity property, it is convenient to work with scaled

variables at both aggregate and individual levels. We use lower-case variables to denote the

corresponding upper-case variables divided by contemporaneous capital stock. For example,

at the firm level, it = It/Kt, φt = Φt/Kt, and xt = Xt/Kt. Similarly, at the aggregate level,

xt = Xt/Kt. For consumers, ct = ct = Ct/Kt.

Let V (K) denote the representative agent’s value function. As in Hong, Wang, and Yang

(2020), the following Hamilton-Jacobi-Bellman (HJB) equation characterizes the planner’s

8Broadly speaking, our mandate choice is related to the optimal fiscal and monetary policy literature in
macroeconomics. See Ljungqvist and Sargent (2018) for a textbook treatment.
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optimization problem:

0 = max
C, I, x

f(C, V ) + Φ(I,K)V ′(K) +
σ2K2

2
V ′′(K) + λ

∫ 1

0

[V (ZK)− V (K)] ξ(Z;x)dZ , (19)

subject to the following resource constraint at all t:

AKt = Ct + It + xtKt . (20)

The first-order condition (FOC) for investment I is

fC(C, V ) = ΦI(I,K)V ′(K) . (21)

And the FOC with respect to mitigation spending is

fC(C, V ) =
1

K
λ

∫ 1

0

[
∂ξ(Z;x)

∂x
V (ZK)

]
dZ , (22)

if the solution is strictly positive, x > 0. Otherwise, x = 0 as mitigation cannot be negative.

The representative agent’s value function takes the following homothetic form:

V (K) =
1

1− γ (bK)1−γ , (23)

where b is a constant measuring the agent’s certainty-equivalent wealth and is endogenously

determined.

Substituting (23) into the investment FOC (21) and the FOC (22) for mitigation spend-

ing, we obtain:

b = (A− i− x)1/(1−ψ)
[

ρ

φ′(i)

]−ψ/(1−ψ)
, (24)

ρ(A− i− x)−ψ
−1

bψ
−1−1 =

λ

1− γ

∫ 1

0

[
∂ξ(Z;x)

∂x
Z1−γ

]
dZ . (25)

And then by substituting (24) into (25), we obtain

1 =
λ

(1− γ)φ′(i)

∫ 1

0

[
∂ξ(Z;x)

∂x
Z1−γ

]
dZ . (26)

Finally, substituting (23) and (24) into (19) and simplifying the expression, we obtain

0 =
ρ

1− ψ−1
[

(A− i− x)φ′(i)

ρ
− 1

]
+ φ(i)− γσ2

2
+

λ

1− γ

[∫ 1

0

[
ξ(Z;x)Z1−γ] dZ − 1

]
.(27)
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4 Solution

In this section, we solve the equilibrium solution with ESG mandate.

4.1 Firm Optimization

For a firm to be sustainable, it spends the minimal required m fraction of its capital stock:

xSt =
XS
t

KS
t

= m. (28)

Any additional spending on mitigation is suboptimal as it yields no further benefit to the

firm. All other firms spend nothing on mitigation and hence are brown, i.e., xUt = 0.

Next, we solve optimal investment policies for both types of firms. The firm’s objective

(7) implies that
∫ s
0
e−r

ntCF n
t dt + e−r

nsQn
s is a martingale under the physical measure. We

obtain the following Hamilton-Jacobi-Bellman (HJB) equation by using Ito’s Lemma:

rnQn = max
In

CF n +

(
Φ(In, Kn)Qn

K +
1

2
(σKn)2Qn

KK

)
+ λE [Qn(ZKn)−Qn(Kn)] , (29)

where rn is the cost of capital and CF n is the cash flow for a type-n firm given by (8). Here,

E [ · ] is the conditional expectation operator with respect to the distribution of recovery

fraction Z. Recall that the last term only depends on the aggregate mitigation spending Xt

and has the same effect on all firms.

By using our model’s homogeneity property, Qn
t = qnKt, we obtain the following

rnqn = max
in

cfn + g(in)qn , (30)

where g(i) is the expected firm growth rate (including the jump effect):

g(i) = φ(i)− λ(1− E(Z)) (31)

and cfn = CF n/Kn is the scaled cash flow for a type-n firm. As xS = m and xU = 0, we

have cfS = A− iS −m for a type-S firm and cfU = A− iU for a type-U firm.

The investment FOC for both types of firms implied by (30) is the following well known

condition in the q-theory literature:

qn =
1

φ′(in)
. (32)
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A type-n firm’s marginal benefit of investing is equal to its marginal q, qn, multiplied by

φ′(in). Equation (32) states that this marginal benefit, qnφ′(in), is equal to one, the marginal

cost of investing at optimality. The homogeneity property implies that a firm’s marginal q

is equal to its average q (Hayashi, 1982). We may also write qS and qU as follows:

qS = max
i

A− i−m
rS − g(i)

and qU = max
i

A− i
rU − g(i)

. (33)

As a firm can choose being either sustainable or not, it must be indifferent between the

two options at all time. That is, in equilibrium, all firms have the same Tobin’s q, which in

equilibrium is also Tobin’s q for the aggregate economy:

qS = qU = q . (34)

Equations (32) and (34) imply that all firms also have the same equilibrium investment-

capital ratio, which is also the aggregate i:

iS = iU = i . (35)

Finally, we note that while the cum-dividend returns are different for the two types of

firms, the capital gains for them are the same path by path, i.e., dQU
t /Q

U
t− = dQS

t /Q
S
t−.

This result follows from the equilibrium properties that the two types have the same Tobin’s

average q, i.e., QU
t /K

U
t = QS

t /K
S
t = q, which implies iS = iU = i via the investment

optimality condition and also gS = gU = g. Indeed, the expected capital gains is equal to the

expected growth rate, Et−(dQU
t /Q

U
t−) = Et−(dQS

t /Q
S
t−) = gdt, which follows from (2). Using

the expression for the total return, given in (9), we see that the expected-return wedge for the

two types of firms comes solely from the dividend yield difference: (cfU/q)− cfS/q = m/q.

4.2 Market Equilibrium

In equilibrium, for both the S and U portfolios, demand is equal to supply, which means

HS
t = αQt, HU

t = (1− α)Qt, (36)

and Wt = Qt = QS
t + QU

t . The disaster hedging position must be zero δ(Z) = 0 for all Z.
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Since the investment opportunity is time invariant and our model is growth stationary,

the equilibrium risk-free rate r, the expected returns (rS and rU) for the S and U portfolios,

Tobin’s average q for all firms (and also the aggregate capital stock) are all constant over

time. It is helpful to use θn to denote the wedge between the expected return for a type-n

firm, rn, and the aggregate stock-market return, rM , and write for n = {S, U},

rn = rM + θn . (37)

As an α fraction of the total stock market is the S portfolio and the remaining 1−α fraction

is the U portfolio, we have

rM = α · rS + (1− α) · rU . (38)

Substituting (37) into (38), we obtain:

θS = −1− α
α

θU . (39)

We will show that the S-portfolio generates a lower rate of return than the stock market,

which in turn generates a lower rate of return than the U -portfolio: θS < 0 < θU .

Equilibrium cost of capital wedge. By using (33), (34), and (35), we obtain:

q =
A− i−m
rS − g(i)

=
A− i

rU − g(i)
=
A− i− x

rM − g(i)
, (40)

where the last equality follows from the second equality. As the investment-capital ratio is

the same for the two types of firms (iS = iU) and xS = m > xU = 0, the difference between

the cash flows for the two types of firms is exactly the mitigation spending: cfU − cfS = m

where cfU = A− i.
Using the last equality in (40), we simplify and obtain

θU =
x

q
=
αm

q
. (41)

Equation (41) states that investors demand a higher rate of return to invest in U firms than

in the aggregate stock market. The expected return wedge between the U -portfolio and
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the market portfolio is equal to θU , which is equal to the aggregate mitigation spending X

divided by aggregate stock market value Q. This ratio x/q can be viewed as a “tax” on the

unsustainable firms by investors in equilibrium.

An unsustainable firm generates higher cash flows with probability one as it does not

spend on mitigation. For the two types of firms to have the same Tobin’s average q, it has

to be that the expected rate of return for an unsustainable firm is higher than that for a

sustainable firm: rU > rS. However, in terms of cash flows, a sustainable firm does worse

than an unsustainable firm with probability one.

In the traditional risk-return sense, an unsustainable firm is not “riskier” than a sus-

tainable firm in our model. However, the investors of the S-portfolio demand a lower rate

of return due to the investment mandate. In this sense, it is the investment mandate that

causes the cost of capital for sustainable and unsustainable firms to be different. Since in our

laissez-faire competitive-market model private sectors provide no aggregate risk mitigation,

the mandate increases welfare as it encourages private sectors to mitigate aggregate risk

which in turn generates positive externality.

Mitigation at firm level and aggregate level. Because the average q and i for all firms

are the same, we know that Tobin’s average q for the aggregate capital stock, which we write

as q, is also equal to a firm’s average q:

q =
c

rM − g(i)
, (42)

where the scaled aggregate consumption c is equal to scaled aggregate dividend:

cf = A− i− x . (43)

Note that x = X/K. Since each S firm spends m units on mitigation for each unit of its

capital stock and all firms are of the same size, we have the following relation between the

scaled mitigation m at the firm level and scaled mitigation at the aggregate level x:

m(x) =
x

α
≥ x . (44)
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The mitigation spending mandate for a firm, m, is larger than the aggregate scaled mitiga-

tion, x, as only an α fraction of firms are sustainable.

We verify that in equilibrium the fraction of total wealth invested in the S portfolio is

equal to α, the fraction of the market capitalization that is mandated to be sustainable:

πS = α. Also, the fraction of total wealth invested in the U portfolio satisfies πU = (1− α)

and the risk-free asset holdings is zero. That is, HS
t = αWt = QS

t = αQt and HU
t =

(1− α)Wt = QU
t = (1− α)Qt.

Equilibrium consumption, risk-free rate and stock market risk-premium. We will

show that the equilibrium scaled consumption c, risk-free rate r, and aggregate stock-market

risk premium rp are the same as in a representative-firm economy (with no mitigation) but

with two modifications to the technology specification: (1) productivity set at A−x and (2)

the cdf for the recovery fraction Z given by Ξ(Z; x) where x is given in equation (44). Using

the results in Pindyck and Wang (2013) and Hong, Wang, and Yang (2020), we calculate

the aggregate stock-market risk premium, rM(x)− r(x), by using

rM(x)− r(x) = γσ2 + λEx
[
(1− Z)(Z−γ − 1)

]
. (45)

The risk-free rate is

r(x) = ρ+ ψ−1φ(i)− γ(ψ−1 + 1)σ2

2
− λEx

[(
Z−γ − 1

)
+
(
ψ−1 − γ

)(1− Z1−γ

1− γ

)]
. (46)

The first two terms in (46) capture the standard Ramsey channels via the discount rate

(ρ) and the expected growth of capital (φ(i)). The third term captures the precautionary

savings effect and the last term is the jump-induced volatility and higher-order moments.

Aggregate mitigation spending Xt = xKt has a direct effect on the distribution of Z and also

an indirect effect on r via its impact on i. To make the distribution of Z on x explicit, we use

x as the superscript for the expectation operator for jump distributions, e.g., in equations

(45) and (46) for the stock market risk premium, rM − r, and the risk-free rate, r.
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4.3 Two-Step Solution Procedure

Given the tractable aggregation properties of our model, we propose a procedure to solve

our variables of interest as a function of the aggregate mitigation spending x. First, we

solve equilibrium price and quantities at the aggregate level. Second, we characterize the

differences between the S and U firms, which boils down to the cost-of-capital wedge and

the corresponding cash flow differences between the two types of firms.

Step 1. For a given level of x, we first solve for the investment-capital ratio i = I/K using:

A− x− i

rM(x)− g
=

1

φ′(i)
, (47)

where g = φ(i)−λEx(1−Z), given in (31), is a function of i and x, and rM(x) and r(x) are

functions of x and i. Equation (47) boils down to i being an implicit function of x.

We can then calculate the aggregate average q by usingusing

1

φ′(i)
= q.

The (aggregate) average q and i are equal to the firm’s average q and i: q = q and i = i,

respectively. We thus use aggregate and firm level notations for q and investment inter-

changeably. The aggregate scaled consumption c is then :

c = [r + rp− g(i)] q = A− x− i . (48)

It is easy to see from these solutions that the aggregate properties of the economy is

essentially like that of the representative agent economy but where the productivity A is

lowered to A− x.

Step 2. From Equation (41), we then calculate θU = x/q and

θS = −1− α
α

x

q
= − (1− α)

m

q
. (49)

Equation (41) states that investors demand a higher rate of return to invest in U firms than

in the aggregate stock market. The expected return wedge between the U -portfolio and
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the market portfolio is equal to θU , which is equal to the aggregate mitigation spending X

divided by aggregate stock market value Q. This ratio x/q can be viewed as a “tax” on the

unsustainable firms by investors in equilibrium.

Notice also that the expected return wedge of unsustainable firms relative to the market

expected return (θU) is independent of α. It only depends on x and q. In contrast, the

expected return of the sustainable portfolio relative to the market portfolio (θS) depends on

α. The more the α the lower is the difference in these expected returns since each sustainable

firm does not have to spend as much on mitigation.

The sustainable firms that spend on aggregate mitigation have lower costs of capital than

the stock market portfolio. The cost-of-capital difference between U and S firms is given by

rU − rS = θU − θS =
1

α

x

q
=
m

q
. (50)

By being sustainable, a firm lowers its cost of capital from rU to rS by rU −rS. To enjoy this

benefit, the firm spends m on mitigation. To make it indifferent between being sustainable

or not, the cost-of-capital wedge satisfies rU − rS = m/q, where m/q is a (wealth) tax on

firm value: the firm’s mitigation spending, mK, divided by the firm’s value, qK.

4.4 Optimal Mandate

So far, we have taken a given level of scaled aggregate mitigation spending, x, as given.

Next, we endogenize x and the optimal mandate threshold for a firm, m. We also solve for

the optimal level of x and the optimal m = x/α in two steps. We characterize the first-best

outcome and then see if the economy has sufficient sustainable capital α to support the

first-best.

First-best. The minimal amount of capital needed to attain the first-best, αFB, is

αFB =
xFB

A− iFB
. (51)

The intuition for this condition is as follows. Provided that at least an αFB fraction of wealth

supports sustainable investments, i.e., α > αFB, the first-best outcome is attained by setting
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the mitigation spending mandate for an individual firm by setting mFB = xFB/α. When

α is very close to αFB, the sustainable firms spend their entire post-investment capital on

mitigation and pays minimal dividends out. As α increases, more firms become sustainable

as the cost of mitigation spending for each firm is reduced. This equilibrium adjustment

also has implications for the cost-of-capital wedge and other equilibrium price and quantity

variables.

Now consider the case where α < αFB, where αFB is given in (51). In this case, the

first-best cannot be attained. The qualification threshold for being a sustainable firm is now

set at m = x/α. The solution requires an α fraction of the firm in the economy to spend

their entire free cash flows (A− i) on mitigation. That is, the (scaled) aggregate mitigation

spending is x = α (A− i).

We choose x to maximize the representative consumer’s utility, equivalently the welfare

measure b given in (24) for the planner’s value function (23), subject to x = α(A− i) and

(1− α)(A− i)

rM − g
=

1

φ′(i)
= q . (52)

5 Quantitative Analysis

In this section, we operationalize our model. First, we calibrate our model and choose

parameter values based on business-as-usual projections of the damage of global warming to

economic growth. Second, we then describe the findings following the logic of the two-step

solution procedure.

5.1 Calibration

Preferences parameters. We choose consensus values for the coefficient of relative risk

aversion, γ = 3 and the time rate of preferences, ρ = 5% per annum. Estimates of the EIS

ψ in the literature vary considerably, ranging from a low value near zero to values as high

as two.9 We choose ψ = 1.2 which is larger than one, as emphasized by Bansal and Yaron

(2004) and the long-run risk literature for asset-pricing purposes.

9Attanasio and Vissing-Jørgensen (2003) estimate the elasticity to be above unity for stockholders, while
Hall (1988), using aggregate consumption data, obtains an estimate near zero.
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Production parameters. As in Pindyck and Wang (2013), we specify the investment-

efficiency function as

φ(i) = i− ηi2

2
− δ , (53)

where δ is the depreciation rate and η measures the degree of adjustment costs. We set the

productivity parameter: A = 25% per annum and the adjustment-cost parameter η = 5.5

as in Eberly, Rebelo, and Vincent (2012), the annual depreciation rate δ = 6% as in Stokey

and Rebelo (1995), and the annual diffusion volatility σ = 10% similar to those in Pindyck

and Wang (2013).

Disaster arrival rate λ and damage function. We calibrate the disaster arrival rate and

damage function using business-as-usual projections from Burke, Hsiang and Miguel (2015).

Their projections are based on a set of panel regressions documenting the adverse effects of

exogenous annual changes in temperature (i.e. weather shocks) for economic growth (Dell,

Jones and Olken (2014)).10 The main idea is that extreme annual temperature fluctuations

are plausibly exogenous shocks that causally trace out the impact of higher temperatures

on output. In samples starting from 1950, this panel regression approach finds that higher

temperatures in the range of two degrees Celsius lowers GDP growth rates and to a lesser

degree capital investments.

They then quantify the potential impact of warming on national and global incomes

by combining these estimated response functions (which can also be modeled as non-linear

as opposed to linear functions) with “business as usual” scenarios (Representative Concen-

tration Pathway (RCP) 8.5) of future warming and different assumptions regarding future

baseline economic and population growth. This approach assumes future economies respond

to temperature changes similarly to today’s economies.

They project that absent mitigation median global GDP per capita will be 0.756 in 2100

of what it is in 2010, i.e. a 24% lower GDP per capita in 2100 compared to 2010 due to global

10This panel regression approach initially focused on how weather affects crop yields (Schenkler and
Roberts (2009)) by using location and time fixed effects. But it is now applied to many other contexts
including economic growth and productivity.
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warming absent mitigation. A 24% lower GDP per capita in 2100 compared to 2010 maps

into an annual GDP per capita growth rate of -0.30% absent mitigation (i.e., (1− .3/100)90

is roughly 0.756 where 90 corresponds to the years of compounding between 2010 and 2100).

Table 1: Parameter Values

Parameters Symbol Value

elasticity of intertemporal substitution ψ 1.2
time rate of preference ρ 0.05
coefficient of relative risk aversion γ 3

productivity A 25%
quadratic adjustment cost parameter η 5.5
capital diffusion volatility σ 10%
depreciation rate δ 6%

power-law exponent with no mitigation β0 6.3

jump arrival rate λ 0.144
mitigation technology parameter β1 262.8

All parameter values, whenever applicable, are continuously compounded and annualized.

Since extreme annual temperatures are related weather disasters (Auffhammer, Hsiang,

Schlenker, and Sobel (2013)), we map these business-as-usual projections into our disaster

framework. First, as in Barro (2006) and Pindyck and Wang (2013), we assume that the cdf

of the recovery fraction, Z, is given by a power-law function defined over (0, 1):

Ξ(Z; x) = Zβ(x) , (54)

where β(x) depends on scaled aggregate mitigation x. To ensure that our model is well

defined (and economically relevant moments are finite), we require β(x) > γ − 1. As in

Hong, Wang, and Yang (2020), we use the following linear specification for β(x):

β(x) = β0 + β1x , (55)

with β0 ≥ max{γ − 1, 0} and β1 > 0. The coefficient β0 is the exponent for recovery Z in

the absence of mitigation. The coefficient β1 is a key parameter that measures the efficiency

of the mitigation technology.
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Second, we set the power-law parameter in the absence of mitigation β0 = 6.3, which is

the point estimate obtained by Barro and Jin (2011) for the power law (54) when it comes

to rare consumption disasters. That is, our definition of a weather related climate disaster

is what Barro and Jin (2011) classified as rare disasters based on historical data on World

Wars and Great Depression.

Conditional on a jump arrival, the expected fractional capital loss, `(x), is given by

`(x) = Ex(1− Z) =
1

β(x) + 1
=

1

β0 + β1x + 1
. (56)

The larger the value of β(x), the smaller the expected fractional loss Ex(1 − Z). Absent

mitigation (x = 0), the implied expected fractional capital loss is `(0) = 1/(β0+1) = 1/7.3 =

14% as β0 = 6.3.

Third, recall that for a given x, expected aggregate growth rate, g, is

g = φ(i)− λEx(1− Z) = φ(i)− λ

β(x) + 1
= φ(i)− λ`(x) . (57)

Absent mitigation, i.e. x = 0, applying our two step solution procedure we obtain i = 11%

per annum. The implied jump arrival rate is λ = 14.4% per annum in order to match the

−0.30% growth rate per annum figure imputed from Burke, Hsiang and Miguel (2015). We

report these parameters associated with the business-as-usual competitive equilibrium in

Table 1.

Mitigation technology β1. Finally, we calibrate the parameter β1 for the mitigation

technology by targeting the conditional damage `(x) given in (56) as follows. Suppose that

a firm were to spend all its revenue AK on risk mitigation, i.e., by setting x → A, the

conditional damage `(A) is equal to a tenth of `(0), the conditional damage in the absence

of mitigation, i.e., `(A)/`(0) = 1/10. This calculation yields β1 = 262.8. We consider

this target to be conservative since technology could improve significantly and welfare gains

would be much greater as a result. That is our calibration is based on a lower bound in

regards to potential technological improvements in the future.

In Table 2, we report outcomes of the other variables of interest for two cases: competitive

equilibrium and first-best outcome. Panel A reports the competitive equilibrium predictions.
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Table 2: Comparing Competitive Market to First-Best

A. Competitive Market Outcomes

mitigation level x 0
aggregate investment i 11%
aggregate consumption/dividends c 14%
expected GDP growth rate g −0.3%
(real) risk-free rate r -2.2%
stock market risk premium rM − r 7.4%
stock market return volatility 13.1%
Tobin’s q q 2.53

B. First-Best Outcomes
first-best mitigation level xFB 1.97%
aggregate investment iFB 10.5%
aggregate consumption/dividends cFB 12.5%
expected GDP growth rate gFB 0.3%
(real) risk-free rate r 1.7%
stock market risk premium rM − r 3.9%
stock market return volatility 11.04%
Tobin’s q qFB 2.38

All parameter values, whenever applicable, are continuously compounded and annualized.

There is no aggregate risk mitigation, x = 0. The market risk premium is high (7.4% per

annum) and the real risk-free rate is negative (-2.2% per annum). In addition, the implied

Tobin’s q is 2.53 and the annual stock market volatility is 13.1%.

Panel B of Table 2 reports the first-best results. With β1 = 262.8, the first-best level of

mitigation is xFB = 1.97%, i.e. 2% per annum. Mitigation spending makes the economy

more sustainable turning the aggregate (expected) growth rate positive (0.3% per annum)

from -0.3% per annum. Compared with the competitive equilibrium results in Panel A, in the

first-best planner’s economy, the real risk-free rate is significantly higher (1.7%) per annum,

the equity risk premium is much lower (3.9% per annum). While aggregate risk mitigation

costs roughly 2% of the capital stock each year, causing both consumption and investment

to be lower than in the competitive market economy, optimally mitigating aggregate risk

nonetheless enhances welfare and generates sustainable growth.
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Figure 1: This figure plots the effects of aggregate mitigation x on aggregate investment i,
aggregate Tobin’s q, consumption c and the representative agent’s welfare measure b. The
parameters values are reported in Table 1.

5.2 Findings

Relation between x and outcome variables of interest. Figure 1 show that as ag-

gregate mitigation spending x increases, both the aggregate investment i and consumption

c decrease (see Panels A and C.) This is because fewer resources are left (after mitigation)

to allocate between investment and consumption. As aggregate investment i decreases with

x and the investment FOC implies that Tobin’s q is monotonic in i, the market value of

capital, q, also decreases with aggregate x (Panel B).

Finally, the social welfare measure first increases with x as the marginal benefit of miti-

gation is large for the society. As aggregate risk mitigation approaches 2% of the aggregate

capital stock (x = 2%), welfare is maximized. Increasing mitigation spending further beyond
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this threshold lowers social welfare. Panel D describes the hump-shaped relation between

social welfare (measured in certainty equivalent wealth b). Notice that at the first-best

outcome, social welfare is nearly 20% higher than in the competitive equilibrium, i.e. when

x = 0.
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Figure 2: This figure plots the effects of (scaled) aggregate mitigation x on the expected
growth rate g, the market risk premium rM − r, the interest rate, and the wedge between
the sustainable firm’s cost of capital and the market return, θU = rU − rM . The parameters
values are reported in Table 1.

Panel A of Figure 2 shows that the expected growth rate g first increases and then

decreases with (scaled) aggregate mitigation spending x. There are two opposing forces.

On the one hand, increasing x makes the economy less risky and hence lowers conditional

damages, which increases g. On the other hand, increasing x takes resources away from

investment i. The net result is that the positive risk reduction effect dominates when x

is low and the negative effect on investment dominates when x is sufficiently large. This
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explains the hump-shaped curve in Panel A.

Panel B of Figure 2 shows that the aggregate market risk premium, rp, decreases with

(scaled) aggregate mitigation spending. This is because the equilibrium jump risk premium

is proportional to Ex [(1− Z)(Z−γ − 1)], which decreases with x as Z becomes less fat tailed.

Panel C shows that the equilibrium risk-free rate r first increases and then decreases with

x. The intuition for this result is as follows. On one hand, increasing x makes the distribution

for Z less fat-tailed, which lowers the representative agent’s precautionary savings demand

and hence increases r as we see from (46). On the other hand, increasing x crowds out

resources for investment i, which lowers the expected growth rate g, as we discussed above

(Panel A) causing the interest rate to decrease. The negative crowding-out force is stronger

when x is sufficiently large while the positive risk-reduction force is stronger when x is not

too large. In equilibrium, we see that the equilibrium interest rate first increases and then

decreases with x.

The cost of being an unsustainable firm. As we have shown, an unsustainable firm

has a higher cost of capital than a sustainable one. Panel D of Figure 2 shows that the wedge

between the cost of capital for an unsustainable firm and the market portfolio, θU = rU−rM ,

increases with the scaled mitigation x. Because q decreases with x (see Figure 1) and

θU = x/q, θU unambiguously increases with x. The intuition for this result is as follows. As

x increases, the unsustainable firm’s cost of capital relative to the market increases as more

mitigation has to be done by sustainable firms. Note that this wedge θU does not depend

on the mandate α.

Next, we analyze how aggregate mitigation x, optimal mandate m for a firm to be sustain-

able, Tobin’s q, and the cost-of-capital wedge, rU−rS between sustainable and unsustainable

firms, vary as we increase the fraction of capital to support sustainable investing, α.

The effect of α on equilibrium mitigation x, mandate m, Tobin’s q, and the cost-

of-capital wedge, rU−rS. Panel A of Figure 3 shows aggregate mitigation x increases with

α and reaches the first-best level xFB for α ≥ αFB. This is intuitive, as with a higher α, the
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Figure 3: This figure plots the effects of α on optimal (scaled) aggregate mitigation x and
the cost-of-capital wedge rU − rS. The parameters values are reported in Table 1.

economy can support more mitigation spending. In this figure, αFB = 13.6%. To attain the

first-best planner’s outcome, we need at least 13.6% of the firm in the economy that spends

xFB/αFB = 1.97%/13.6% = 14.5% of their capital stock on mitigation and the remaining

output A− xFB = 25%− 14.5% = 10.5% on investment, so that the economy supports the

first-best level of investment: iFB = 10.5% for both sustainable and unsustainable firms.

As we increase α beyond 13.6%, the economy can achieve the first-best resource allocation

with a smaller mitigation spending mandate for sustainable firms. As a result, mitigation

becomes less costly for sustainable firms and the required rate of return for them decreases.

Panel B of Figure 3 shows that the optimal mandate m is increasing with α in the region

where α < 13.6% and decreasing with α in the region where α > 13.6%. When α < αFB,

the sustainable firm spends their entire free cash flows x = α (A− i) on mitigation, which
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implies m = x/α = A − i. Since i is decreasing in x (see Panel A of Figure 1) and x is

increasing in α (see Panel A of of Figure 3), the optimal mandate m is thus increasing in

α. When α > αFB, the first-best outcome is attainable and each sustainable firm does their

proportional share of mitigation: m = xFB/α. It is immediate to see that m is decreasing

in α. We have explained the single-peaked pattern of m as a function of α. Our calculation

suggests that the amount of mandate required is high (around 14-16%) of capital, which is

more than 60% of the sustainable firm’s revenue AK.

Panel C of figure 3 shows that Tobin’s q decreases with α until we reach αFB. The

intuition is as follows. In the region α < αFB, as we increase α, mitigation spending x

increases, which crowds out investment and in turn lowers Tobin’s q as q is increasing in i

(see Panels A and B of figure 1). In the region where α > αFB, the economy attains the

first-best and hence q ≡ qFB.

Finally, Panel D shows that the cost-of-capital wedge between sustainable and unsustain-

able firms, rU − rS, increases with α until reaching αFB, but then decreases with α. Recall

that equation (50) shows the cost-of-capital wedge, rU − rS, is equal to m/q. As m increases

and q decreases with α in the region where α < αFB (Panels B and C), the cost-of-capital

wedge, rU − rS, in equilibrium increases with α. The intuition is that as α increases, the

economy supports more mitigation, the mandate is getting larger for each firm and moreover

the firm’s value falls as well. These two forces work towards the same direction increasing

rU − rS. The wedge rU − rS reaches the maximum of 6.1% per annum when α reaches

αFB = 13.6%. The decreasing part reflects the simple fact that as there is more capital

available to support the first-best level of mitigation, each firm spends less on mitigation

and hence its required compensation in terms of cheaper cost of capital falls.

6 Conclusion

Sustainable finance mandates have grown significantly in the last decade in lieu of government

failures to address climate disaster externalities. Firms that spend enough resources on

mitigation of these externalities qualify for sustainable finance mandates. These mandates
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incentivize otherwise ex-ante identical unsustainable firms to become sustainable for a lower

cost of capital. We present and solve a dynamic stochastic general equilibrium model to

address their welfare consequences. The model is highly tractable, particularly a simple

formula that characterizes the cost-of-capital wedge as the tax rate on firm value to subsidize

mitigation.

We then propose a calibration of our model based on global warming projections. A

mandate of 82% of firms spending 9.6% of their output on mitigation for a 1% cost-of-capital

wedge generates a first-best outcome. Mandates in practice are an order of magnitude too

small, leaving significant welfare gains on the table. Welfare is nearly 20% higher while

Tobin’s q is only modestly lower in large sustainable finance mandate equilibrium compared

to the competitive equilibrium because mitigation reduces aggregate risk.
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Appendices

A Details for Model Solution

A.1 Firm Value Maximization

Using the standard dynamic programming, we obtain the following HJB equation for Qn:

rnQn = max
In,Xn

AKn − In −Xn +

(
Φ(In,Kn)QnK +

1

2
(σKn)2QnKK

)
+ λE [Qn(ZKn)−Qn(Kn)] .

(A.58)

And then substituting Qn(K) = qnKn into (A.58), we obtain

rnqn = max
in,xn

A− in − xn + φ(in)qn + λ [E(Z)− 1] qn . (A.59)

The FOC for investment implied by (A.59) is

qn =
1

φ′(in)
, (A.60)

which is the standard Tobin’s q formula (e.g., Hayashi, 1982). As xU ≥ 0 and xS ≥ m, the optimal

mitigation spending is xU = 0 for a type-U firm and xS = m for a type-S firm. as no firm wants

to spend more than it has to on mitigation.

We may rewrite (A.59) as

qn = max
in

A− in − xn
rn − g(in)

, (A.61)

where g(in) = φ(in)− λ(1− E(Z)). Equation (A.61) implies (33).

As all firms have the same Tobin’s q in equilibrium, we have iS = iU = i and

q =
A− i−m
rS − g(i)

=
A− i

rU − g(i)
. (A.62)

A.2 Household’s Optimization Problem

Using the same procedure as in Pindyck and Wang (2013) and Hong, Wang, and Yang (2020), we

can show that both the optimal risk-free asset holding and the jump hedging demand for all levels

of Z are zero in equilibrium. Therefore, then may rewrite the household’s wealth dynamics given

by (13) as follows

dWt = Wt−
[[
r + (rS − r)πSt− + (rU − r)(1− πSt−)

]
dt+ σdBt − (1− Z) (dJt − λdt)

]
− Ct−dt ,

(A.63)

where πS = HS/(HS +HU ) = HS/W .
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The post-jump wealth is WJ = W − (1− Z)W = ZW . The following HJB equation charac-

terizes the value function J(W ):

0 = max
C,πS

f(C, J) +
[
rW +

(
(rS − r)πS + (rU − r)(1− πS) + λ(1− E(Z))

)
W − C

]
J ′(W )

+
σ2W 2J ′′(W )

2
+ λ

∫ 1

0
[J (ZW )− J(W )] ξ(Z)dZ , (A.64)

subject to πS ≥ α. The FOC for consumption C is the standard condition:

fC(C, J) = J ′(W ) . (A.65)

Because the S- and the U -portfolio have exactly the same (diffusion and jump) risk exposures with

probability one, the optimality for πS is positive infinity if rS > rU as we can see from (A.64).

This is not an equilibrium. In equilibrium, rS ≤ rU and πS = α holds. We later pin down the

equilibrium relation between rS and rU .

Let Jt = J(Wt) denote the household’s value function. We show that

J(W ) =
1

1− γ (uW )1−γ , (A.66)

where u is a constant determined endogenously. Substituting (A.66) into the FOC (A.65) yields

the following linear consumption rule:

C(W ) = ρψu1−ψW . (A.67)

A.3 Market Equilibrium

First, a sustainable firm spends minimally on mitigation: xS = XS

KS . Second, in equilibrium,

the household invests all wealth in the stock market and holds no risk-free asset, H = W and

W = QS+QU , and has zero disaster hedging position, δ(Z) = 0 for all Z. Third, the representative

agent’s (dollar amount) investment in the S portfolio is equal to the total market value of sustainable

firms, πS = α and (dollar amount) investment for the U portfolio is equal to the total market value

of unsustainable firms, πU = 1− α. Finally, goods market clears.

By using the preceding equilibrium conditions together with H = W = QS + QU = qSKS +

qUKU = q(KS +KU ) = qK, WJ = ZW and πS = α, we obtain

αrS + (1− α)rU = r + γσ2 + λE
[
(1− Z)(Z−γ − 1)

]
= rM , (A.68)

p(Z) = λZ−γξ(Z) . (A.69)

Using αrS + (1− α)rU = rM , x = αm, and (A.62), we obtain

A− i− x

rM − g(i)
=

α(A− i−m) + (1− α)(A− i)

αrS + (1− α)rU − g(i)

=
αq(rS − g(i)) + (1− α)q(rU − g(i))

α(rS − g(i)) + (1− α)(rU − g(i))
= q , (A.70)
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which implies (40). And solving

q =
A− i

rM + θU − g(i)
=

A− i

rU − g(i)
=

A− i− x

rM − g(i)
, (A.71)

we obtain (A− i)θU = x(rU − g(i)) and θU = x/q = αm/q as shown in (41).

In addition, the optimal consumption rule given in (A.67) implies

c =
C

K
=

C

W
q = ρψu1−ψq . (A.72)

And then substituting c given by (A.72) and the value function given in (A.66) into the HJB

equation (A.64), and using π = α, δ = 0, and H = W , we obtain

0 =
1

1− ψ−1
(
c

q
− ρ
)

+

(
αrS + (1− α)rU − c

q
+ λ(1− E(Z))

)
− γσ2

2
+

λ

1− γ
[
E(Z1−γ)− 1

]
=

1

1− ψ−1
(
c

q
− ρ
)

+

(
rM − c

q
+ λ(1− E(Z))

)
− γσ2

2
+

λ

1− γ
[
E(Z1−γ)− 1

]
. (A.73)

The goods market clear condition implies c = α(A − iS − xS) + (1 − α)(A − iU ) = αqS(rS −
g(iS)) + (1− α)qU (rU − g(iU )) = q(rM − αg(iS)− (1− α)g(iU )) = q(rM − g(i)). By using (A.62),

we obtain

c

q
= rM − g(i) , (A.74)

which implies (42). And then by substituting it into (A.73) and combining rM = r + γσ2 +

λE [(1− Z)(Z−γ − 1)], we obtain (46) for the equilibrium interest rate.
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