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Abstract

We evaluate the performance of private equity (“PE”) funds, using a variance de-

composition model to separate skill from luck. We find a large amount of long-term

persistence, and skilled PE firms outperform by 7% to 8% annually. But this per-

formance is noisy, with a large amount of luck, so top-quartile performance does not

necessarily imply top-quartile skills, making it difficult for investors (“LPs”) to iden-

tify skilled PE firms. Buyout (“BO”) firms show the largest skill differences, implying

the greatest long-term persistence. Venture capital (“VC” ) performance is the most

noisy, making good VC firms hardest to identify, and implying the smallest amount of

investable persistence.

The authors can be reached at Stanford Graduate School of Business (korteweg@stanford.edu) and
Columbia Business School (ms3814@columbia.edu). We are grateful to Matt Rhodes-Kropf, Paul
Pfleiderer, Per Stromberg, and participants at the 2013 Spring JOIM conference on Private Equity
for helpful comments and feedback.
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The persistence and predictability of returns is a central topic in finance. Studies of in-

dividual stocks, mutual funds, and hedge funds generally find that returns are unpredictable

and that investors cannot consistently outperform the market. An important exception is

private equity (“PE”), including venture capital (“VC”), buyout (“BO”) and other types of

PE firms. A PE firm typically manages a sequence of PE funds, and Kaplan and Schoar

[2005] find that the performance of fund number N � 1 predicts the performance of the

subsequent fund N. A natural interpretation is that PE firms differ in their skills and abili-

ties, and that funds that are managed by skilled PE firms consistently outperform. A puzzle

is then why this outperformance is not competed away by the investors (“LPs”) in these

funds, e.g., by driving up the fees that more skilled PE firms charge their LPs.

Kaplan and Schoar [2005], and subsequent studies,1 measure persistence as a positive

and statistically significant b coefficient in the regression:

yi,N = a+b⇥ yi,N�1 + ei,N , (1)

where yi,N is the performance of fund number N managed by PE firm i. This regression

is motivated by a cross-sectional intuition. In the cross-section, some funds have better

performance, and if these funds follow previous funds by the same PE firm that also had

better performance, this is evidence of persistence. Formally, however, equation (1) is a

time-series AR(1) model, and there is a tension between this cross-sectional intuition and

its time-series properties. The AR(1) model does not distinguish skill from luck. If an

unskilled PE firm is lucky and its fund outperforms, which happens occasionally when

performance is random, then the AR(1) model implies that this PE firm is now considered

a skilled firm, and its next fund is also expected to outperform. Similarly, a skilled firm with

an unlucky fund is immediately considered unskilled. In the limit, after all PE firms have

undergone a number of such transitions, the AR(1) model implies that their performance

will converge to the same limit distribution, with E[y] = a
1�b .2 Hence, the AR(1) model

is an empirical model of performance persistence that implies no long-term performance
1Including Phalippou and Gottschalg [2009], Hochberg, Ljungqvist, and Vissing-Jorgensen [2010],

Phalippou [2010], Robinson and Sensoy [2011], Chung [2012], Braun, Jenkinson, and Stoff [2013], and
Harris, Jenkinson, Kaplan, and Stucke [2013].

2This convergence fails when b � 1 and the time series is non-stationary (b = 1 implies a unit root).

2



differences, which seems undesirable.

Overview We present a new variance-decomposition model of PE performance that bet-

ter captures the cross-sectional intuition. Our model explicitly models skill and luck, so an

unskilled PE firm with a lucky fund does not become a skilled firm. We model heteroge-

neous skills of PE firms, and our model allows some PE firms to consistently outperform.

It does not imply that all firms converge in the limit. Separating skill from luck also leads

to a natural distinction between two types of persistence, which we term long-term and

investable persistence: Long-term persistence reflects the average outperformance of more

skilled PE firms, and it captures how heterogeneous skills affect PE performance. In con-

trast, investable persistence captures whether investors (“LPs”) can identify the skilled PE

firms. When performance is random, top-quartile performance may be due to luck, and

it does not necessarily imply top-quartile skills. This distinction matters. We find a large

amount of long-term persistence, and skilled PE firms outperform by 7% to 8% annually,

across all fund types. This performance is noisy, though, and we find only a small amount

of investable persistence, particularly for venture capital (“VC”) firms. VC performance is

mostly due to luck, and an LP needs to observe the performance of an excessive number of

past funds (on the order of 25 to 50 past funds) to identify a VC firm as having top-quartile

skills with reasonable certainty.

Comparing different subsamples, we find that smaller funds have greater persistence

than larger funds. Particularly large VC funds have weak long-term persistence and worse

signal-to-noise ratios. Comparing locations of PE firms, we find the least persistence for

PE firms located in the US, followed by Europe, and the greatest persistence for PE firm

located in the rest of the world (“ROW”), although these PE firms also have more volatile

performance. We confirm that persistence has declined in the 2000s relative to the 1990s.

This decline is largest for VC firms, and we find that Buyout and Other funds still show

substantial long-term persistence, even post 2000.

Our finding of large long-term persistence but little investable persistence has several

implications: First, it explains LPs’ increasing focus on obtaining more detailed informa-

tion about PE firms and their past funds (such as the PE firms’ internal organization and
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culture, internal compensation and alignment of incentives, processes and deal sourcing) to

help them attribute past performance (e.g., Ewens and Rhodes-Kropf [2013]). Our results

show that such detailed information is necessary for LPs to identify top PE firms. Informa-

tion about past fund performance, by itself, is insufficient. Second, our results may explain

why outperformance is not competed away. PE skills are scarce, but when performance is

noisy, LPs with the ability to identify skilled PE firms may also be scarce, and those LPs

should earn rents (Lerner, Schoar, and Wongsunwai [2007] and Berk, Wang, and Weisbach

[2013] study heterogeneous LP skills). Last, our findings confirm the economic realities

behind the common saying among VCs that “I’d rather be lucky than smart.”

Model For our analysis, we develop a variance decomposition model, or hierarchical lin-

ear model, which generalizes the classical analysis of variance (“ANOVA”) methods. We

estimate our model with a Bayesian procedure, as described in the appendix. The model has

several advantages relative to the AR(1) model:3 First, as mentioned, our model explicitly

separates skill from luck. When performance is noisy, top-quartile performance does not

imply top-quartile skills, and this distinction leads to two different notions of persistence:

Long-term persistence arises from the difference between skilled and unskilled PE firms.

Investable persistence, in contrast, reflects the difference between PE firms with good and

bad past performance. Second, our model explicitly captures the timing of the funds, and it

does not rely on the numbering of these. This is important for simultaneous funds, where it

is arbitrary which one is labeled N and N�1, and our model distinguishes situations where

fund N follows fund N�1 by a few months from those they are years apart. Moreover, our
3Persistence is also sometimes studied by estimating transition probabilities across fund quartiles

(Billingsley [1961] surveys the statistical issues that arise when estimating parameters and testing hypotheses
in Markov chains). If funds’ performances are i.i.d., then the probability that a top-quartile fund remains top
quartile is 25%; and more generally, P[yi,N 2 Q|yi,N�1 2 Q] = 25% when Q contains the performance for any
quartile. Hence, the empirical finding that P[yi,N 2 Q|yi,N�1 2 Q]> 25% implies that performance cannot be
i.i.d., which is sometimes interpreted as evidence of persistence, but this interpretation is tenuous. For exam-
ple, let there be two types of PE firms, with an equal number of each. The first type determines the return
of each of its funds by flipping a dime, and it is either +10% or -10%, with equal probability. The second
type flips a quarter, and its returns are either +25% or -25%. Hence, the returns for the four quartiles are:
+25%, +10%, -10%, and -25%. For each quartile, the transition probability is P[yi,N 2 Q|yi,N�1 2 Q] = 50%,
so returns are not i.i.d. (obviously), but there is no persistence in the conventional sense. Conversely, finding
transition probabilities of P[yi,N 2 Q|yi,N�1 2 Q] = 25%, by itself, does not imply an absence of persistence.
It is neither a necessary nor sufficient condition. Hence, the economic magnitudes and statistical significance
of persistence are difficult to evaluate using transition probabilities across quartiles.
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estimates include firms that only raise a single fund, which then has no fund N �1. Third,

our model has a non-parametric component and does not impose normality on fund returns.

Instead, we use a general mixtures-of-normals distribution and use a Bayes factor test for

the number of mixtures. This flexibility is especially important for VC funds, which have

highly skewed returns. Fourth, our Bayesian approach is computationally efficient, and it

provides accurate small sample inferences for the estimated parameters, which is important

when the parameters of interest are variances (and a ratio of variances in the signal-to-noise

ratio), which have non-standard asymptotic distributions.

Literature Following Kaplan and Schoar [2005], a number of studies have investigated

the persistence of PE performance. Phalippou and Gottschalg [2009] consider persistence

after correcting for potential biases in reported interim NAVs. Chung [2010] and Phalippou

[2010] find weaker effects when regressing yi,N on yi,N�2, and they argue that persistence

is short lived. Hochberg, Ljungqvist, Vissing-Jorgensen [2010] model performance persis-

tence that arises from asymmetric information between the LP and GP. Recently, Harris,

Jenkinson, Kaplan, and Stucke [2013] find that persistence has declined post 2000 for BO

firms, and this finding is confirmed by Braun, Jenkinson, and Stoff [2013], using deal-level

data. Separating skill from luck is a general question in economics and finance, and our

analysis may be useful for other applications, such as the persistence of the performance

of serial entrepreneurs (e.g., Bengtson [2013]; Gompers, Kovner, Lerner, and Scharfstein

[2010]).

Outline The paper proceeds as follows. In Section I we present the data. Section II

presents our empirical model. Section III presents our results and discusses the evidence

for “long-term” persistence in private equity performance. Section IV estimates a learning

model and evaluates the “investable persistence.” Section V analyzes various subsamples

of the data, and Section VI concludes. We provide a detailed description of the Bayesian

estimation procedure in the Appendix.
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I Data

This paper uses an extensive dataset with PE firms, the funds they manage, and the per-

formance and other information for these funds. The data are obtained from Preqin, a

commercial data provider that started collecting performance data using freedom of infor-

mation act (“FOIA”) requests to public investors and later extended the scope of its data

collection to other public filings and voluntary reporting by some GPs and LPs. For each

fund, Preqin only reports aggregate fund performance, such as the IRR and Total Value

to Paid-in Capital multiple (“TVPI”). We do not have individual cash flows between the

LPs and GPs. One limitation of these data is that they do not contain the public market

equivalent (“PME”) measure of fund performance, which has advantages when evaluating

risk-adjusted performance (see Sorensen and Jagannathan [2013] and Korteweg and Nagel

[2013]).

Harris, Jenkinson, and Kaplan [2013] compare several datasets with PE fund perfor-

mance. Most of these data are from commercial data providers (Preqin, Burgiss, and Cam-

bridge Associates) and one is from a large anonymous LP (studied by Robinson and Sensoy

[2011]). For buyout (“BO”) funds, they find that Preqin contains the largest total number of

funds in the 1990s and 2000s (but not in the 1980s). For venture capital (“VC”) funds, Pre-

qin has slightly weaker coverage in the 1980s and 1990s, but it is the most comprehensive

dataset in the 2000s. Importantly, of all the datasets, the Preqin data contain performance

information for the greatest number of both BO and VC funds. Moreover, they find no

evidence that Preqin’s performance data are biased relative to the performance data from

other data sources. Hence, when analyzing the performance and persistence of PE funds,

the Preqin data are among the best data sets currently available.

The Preqin data contain information about each fund’s type. The two main fund types

are buyout (“BO”) and venture capital (“VC”) funds, but Preqin also classifies funds as:

real-estate, fund-of-funds, infrastructure, turn-around, special situations, co-investment,

and venture debt funds, which we collectively refer to as “Other” funds. The majority

of “Other” funds are real-estate and infrastructure funds, and while these two fund types

are quite different, we find that they have (surprisingly) similar performance and persis-

tence, and we combine all of these fund types for most of our analysis. We define a fund’s
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geographical location by the location of its GP. This location may differ from the loca-

tions of the portfolio companies, but we obtain very similar results when we instead define

location in terms of the fund’s geographical investment focus.

Sample We restrict our sample to funds with available performance information. Our

model explicitly captures the timing of the individual funds; it does not hinge on the num-

bering of funds, and our estimates are valid even when performance data are missing for

some (randomly chosen) funds. We avoid concerns raised in recent studies about funds’

self-reported intermediate IRRs, TVPIs and NAVs (“net-asset values”), by restricting our

sample to fully liquidated funds. Finally, we restrict our sample to funds with at least USD

5M of committed capital (in 1990 dollars) to exclude smaller idiosyncratic funds. Our final

sample contains 1,924 funds, raised between 1969 and 2001, and managed by 891 firms.

There are 842 venture capital (“VC”) funds, 562 buyout (“BO”) funds, and the remaining

518 funds are classified as Other funds. Table I shows summary statistics for our final

sample. Panel B shows sub-classifications of VC and Other funds.

** TABLE I: SUMMARY STATISTICS **

Internal Rate of Return Preqin reports each fund’s internal rate of return (“IRR”). The

IRR is the annualized return to the limited partners (“LPs”) in the fund, net of performance

fees (“carried interest” or “carry”) and management fees. While the IRR has well-known

limitations, it is the most widely available fund performance measure and commonly used

in studies of fund performance.

** TABLE II: FUND IRRs BY VINTAGE YEAR **

Table II reports the average IRR for each year. These IRRs are plotted in Figure 2 for

VC, BO, and Other funds. For VC funds, we see strong performance during the dot-com

bubble in the late 1990s, with average (annualized) IRRs as high as 45.2%, followed by

the sharp drop after the bursting of the dot-com bubble. Each fund has a ten-year life, and

the indicated year is the fund’s year of inception (“vintage year”), so funds with vintage

years well before 2000 were exposed to the bubble and show lower performance. BO
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performance has been more stable, and it has recently shown a strong recovery relative to

VC and Other funds. The performance of Other funds has been even more stable, showing

an earlier but more modest decline in the late 1990s, followed by a corresponding recovery.

** FIGURE 1: IRRs BY VINTAGE YEAR **

Our analysis uses total log-returns (or “continuously compounded” returns) rather than

annualized IRRs, which is reported by Preqin. The total (log-)return for fund u is denoted

yiu, and it is calculated by compounding the fund’s IRR over its ten year life, as follows:

yiu = 10 · ln(1+ IRRiu) . (2)

This calculation fails for two funds that have IRRs of -100% (one is a 2001 VC fund and

the other is a 1998 BO fund). Our analysis excludes these two funds, but our results are

robust to including them with IRRs set equal to the first (lowest) percentile of the IRR

distribution.

II Variance Decomposition

Model Introduction For our empirical analysis, we use a hierarchical linear model,

which generalizes the classical analysis of variance (“ANOVA”) decomposition. Hierar-

chical models, using Bayesian estimators that exploit advances in numerical computing

(Markov-Chain Monte Carlo, Gibbs sampling, and posterior augmentation), have recently

been extensively developed and applied. These models were initially used for educational

measurement, because they capture the hierarchical structure that arises when, for example,

one observes individual students, who are grouped into classrooms, in different schools, in

different districts, etc. (For introductions to hierarchical models and more applications see

Raudenbush and Iryk [2008] and de Leeuw and Meijer [2008].) This hierarchical structure

also arises for PE when individual PE funds are managed by different PE firms and span

different time periods (with data for individual deals, as in Braun, Jenkinson, and Stoff

[2013] or with LPs’ holdings of PE funds, as in Sensoy, Wang, and Weisbach [2013], our

model extends to data at these additional levels as well).
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Modeling the hierarchical structure avoids the unit of analysis problem (Burstein et al.

[1980]). When studying the persistence of PE performance, we are interested in differences

between PE firms, so the the unit of analysis is a PE firm, but the unit of observation is the

underlying funds, which are repeated measures of the PE firm’s quality. Increasing the

number of funds per firm improves the estimate of each firm’s quality but not the number

of firms that are compared. With few firms but many funds per firm, observing even more

funds per firm becomes uninformative, because the main sampling error arises from the

sampling of the firms’ qualities, not the sampling of the funds observed for each firm.

In contrast, increasing the number of observed firms always improves the estimates. It is

difficult for classical regression models, using PE firm-fixed effects (“FEs”), to address this

problem, because these models only consider the sampling of the funds for a given set of

PE firms (i.e., a given set of PE-firm FEs), not the sampling of the PE firms themselves

(i.e., the sampling of the observed FEs from a larger population of potential FEs).

Economic Intuition To illustrate the intuition behind our variance decomposition, con-

sider 60 PE firms. Each firm makes two investments (or manages two funds), each of

which either succeeds or fails. For the resulting 120 investments, say, we observe that one

half fails and the other half succeeds, so the unconditional success probability is 50%. If

the individual investments were statistically independent, each investor would have 25%

probability of zero successful investments, 50% probability of a single success, and 25%

chance of two successes. We would then see 15 of the 60 PE firms with no successes, 30

with a single one, and the remaining 15 firms with two successful investments. Imagine

instead that the observed successes are evenly distributed among the 60 PE firms, so 20

have zero, 20 have one, and 20 PE firms have two successes. In other words, the perfor-

mance variation between PE firms exceeds the amount of variation that is implied by the

investments within PE firms, if the investments were independent. In this case, the invest-

ments cannot be independent, obviously, so some PE firms must have higher (and lower)

success probabilities. In other words, some PE firms persistently show better (and worse)

performance. For example, the even distribution of success among PE firms is consistent

with each PE firm’s success probability being drawn from the uniform distribution on [0,1].
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If pi denotes firm i’s success probability, then the expected probability of two successes is

E[p2
i ] = 33% when pi ⇠U [0,1]. Based on this intuition, we define and measure persistence

by comparing the performance variability within funds to the performance variability be-

tween PE firms. When there is excess variation between firms, as in this example, it implies

persistence.

This intuition also leads to a natural distinction between PE firms with high skill and

high performance. With pi ⇠U [0,1], using Bayes rule, conditional on observing two suc-

cesses, the posterior density of pi is f (pi|SS) = 3p2
i . Hence, the probability that a firm with

top-tercile performance (two successes) has top-tercile skill is Pr(pi 2 [0.66;1]|SS) = 70%.

And the expected success probability for a subsequent fund by a firm with top-tercile per-

formance is only E [pi|SS] = 75%, whereas the success probability for a firm with actual

top-tercile skill is E [pi|pi > 66%] = 83%.

Note that performance is a noisy indicator of skill even when the skill distribution is

perfectly known (i.e., pi ⇠ U [0,1] is known). When the skill distribution is estimated,

additional uncertainty arises due to estimation error. Our model, which we discuss next,

incorporates this parameter uncertainty as well.

Formal Model Let PE firms be indexed by i. Each PE firm manages a sequence of

underlying PE funds, indexed by u. Each PE fund is managed by a single PE firm, so a

fund uniquely identifies its firm. Each observation contains the fund’s performance and

other characteristics of the firm and fund. We specify the ten-year total log-return of fund

u as:

yiu = X 0
iub+

tiu+9

Â
t=tiu

(ai +hit)+ eu . (3)

Here, Xiu contains time fixed effects for the timing of the fund (formally, the model is then

a mixed-effects model). The sum runs over the ten years where the fund is alive and active,

with year tiu denoting the fund’s first year of operations (“vintage year”). The three terms

ai, hit, and eu are three random effects that define the variance-covariance structure across

the funds’ performances. Our model cannot determine when a given fund’s return is earned

during its life, because we only observe each fund’s ultimate performance. The model can

determine, however, how much of the variation in this performance that is due to each of
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the three random effects.

Statistical Properties The random effects in equation (3) decompose the variation in

fund performance into three parts: First, ai is the PE-firm effect, reflecting long-term per-

sistence. For each PE firm, it is distributed N
�
0,s2

a
�
, and it is constant for all funds

managed by the same firm. We interpret a PE firm with a high ai as having greater skills

(corresponding to a higher success probability, pi, in the example). The model is param-

eterized with ai inside the sum in equation (3), so each fund “earns” ai ten times, and ai

is the annualized return to the PE firm’s skill. Second, hit is the PE firm-time effect. For

each firm and year, hit is distributed i.i.d. N
�
0,s2

h
�
. Two partially overlapping funds

that are managed by the same firm will share an hit term for each year of overlap, which

introduces correlation between partially overlapping funds that are managed by the same

firm. Third, eu is an error term, capturing the residual idiosyncratic variation in each fund’s

performance. Because fund performance is highly skewed, we allow eu to be distributed as

a mixture of normals, which is considerably more flexible than the normal distribution.4

The sum in equation (3) contains the same ai term ten times, and ten i.i.d. hit terms, so

the total variance of yu is:

s2
y = 100s2

a +10s2
h +s2

e . (4)

Economic Motivation The three random effects are motivated as follows: First, some PE

firms may have particular investment or management skills that improve the performance

of all their funds. Such long-term persistence is captured by the ai term, the variation in ai

across PE firms captures differences in skills across PE firms. When there is little variation

in ai, corresponding to a small s2
a, then PE firms are similar, and there are few persistent

differences in their performance. When s2
a is large, more of the performance difference is

due to heterogeneous skills of the PE firms.

Second, PE firms typically manage several contemporaneous funds, and they make si-

multaneous management and investment decisions across funds. At any time, a PE firm

may be attracted to a particular technology, industry, geography, or management practice.
4Using Bayes factors to test model specifications, we find that VC performance requires a mixture of three

normals whereas the performance of Buyout and Other funds are captured by mixtures of one or two normal
distributions.
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For example, a PE firm that manages two funds with vintage years 1999 and 2001 may

be focusing on investments in emerging markets for both funds. Hence, these two funds

will be exposed to similar shocks during 2001–09. In this case, a regression of the perfor-

mance of the latter funds on the performance of the former funds would result in a positive

coefficient. This coefficient, however, is not evidence of persistence, as usually defined,

and it does not imply that the PE firm’s past performance predicts its future performance.

Instead, the coefficient arises from the spurious correlation due to the unobserved common

component shared by the funds. In our model, these shared components are captured by

hit. All overlapping funds that are managed by the same PE firm share an hit term for each

year of overlap. These shared terms capture the increasing correlation between funds with

greater overlaps. When the estimated s2
h is large, this overlap effect is large. Formally,

the covariance between two funds that are managed by the same PE firm, with N years of

overlap, is:

COV(yiu,yiv) = 100s2
a +Ns2

h . (5)

This covariance relationship is plotted in Figure 2, and this figure illustrates the identifica-

tion of the model. The main parameters of interest are the variances of the three random

effects, s2
a, s2

h, and s2
e . In Figure 2, the intercept is s2

a and the slope is s2
h, so these two

variances are identified by comparing the covariances of funds with increasing amounts

of overlap. Given s2
a and s2

h, and observing total variance, s2
y , the residual variance in

equation (4) identifies s2
e .

** FIGURE 2: OVERLAP AND COVARIANCE **

III Results

A IRR Regressions

We first confirm the original findings by Kaplan and Schoar [2005] using our data. Ta-

ble III reports coefficients from OLS regressions of IRRi,N on IRRi,N�1, and the reported

coefficients show that the previous fund’s performance strongly predicts the performance

of the subsequent fund. In Specification I, the positive and significant coefficient of 0.125
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suggests that a VC fund with a 1% higher IRR predicts a 0.125% higher IRR for the sub-

sequent fund. Specification II suggests that this effect is even stronger when controlling

for the performance of fund N � 2, although the coefficient on this second fund’s perfor-

mance is negative. For BO funds we find similar positive and significant effects. For Other

funds, however, the coefficient is initially positive and significant, but it becomes smaller

and insignificant after including fund N � 2. The weaker statistical results may be due to

the smaller sample size. Moreover, fund N �2 may still be partially overlapping with fund

N, so the positive coefficients may also reflect this overlap rather than actual persistence.

In Panel B of Table II, we reduce the sample to funds that are entirely non-overlapping,

which reduces the sample size substantially, leaving no remaining signs of persistence, but

it is difficult to disentangle this weaker result from the low statistical power due to the

small sample size. Note also that none of the specifications in the two panels suggest that

performance is systematically related to fund size, and there is some weak evidence that a

higher sequence number is associated with better performance.

** TABLE III: IRR REGRESSIONS **

A natural interpretation of these results is that BO funds have the most persistence

(largest coefficients and R2, and still significant with fund N � 2), followed by VC funds

(smaller coefficients and R2 than BO funds, but still significant with fund N �2), and that

Other funds show the least, if any, performance persistence (smallest coefficients and R2,

and insignificant with fund N �2). This analysis and interpretation, however, does not dis-

tinguish skill from luck, and it does not distinguish long-term from investable persistence.

B Long-Term Persistence

Table IV reports the estimated parameters of our model. Panel A shows the magnitudes of

the three random effects as measured by their standard deviations (sa, sh and se).5 The

5We use a Bayesian estimator, but we report results using standard frequentist terminology: The “point
estimate” is the mean of the posterior distribution, and the “standard error” is the the standard deviation of the
posterior distribution. A parameter is “statistically significant,” at a given level, when zero is not contained in
the corresponding symmetric credible interval, as usually defined in Bayesian statistics. Our Bayesian estima-
tor produces exact small-sample inference, even for non-linear transformations of the estimated parameters,
and all reported inference is calculated this way. We do not rely on any asymptotic approximations.
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decomposition of the variances (100⇥s2
a, 10⇥s2

h , s2
e and s2

y ) is easier to interpret, and

is reported in Panel B. Next, we discuss the interpretation of these estimates in detail.

** TABLE IV: PARAMETER ESTIMATES **

Buyout For BO funds, Specification I of Table IV shows a total unconditional variance

(s2
y) of 2.428. This variance can be decomposed into three effects, with 0.361 due to long-

term persistence (100⇥s2
a), 0.216 due to the overlap effect (10⇥s2

h), and the remaining

1.852 due to idiosyncratic variance (s2
e). The long-term persistence effect, as measured by

sa, is statistically significant,6 consistent with the earlier findings using the AR(1) regres-

sion.

To evaluate the economic magnitude of the long-term persistence, note that the annual

contribution of a PE firm’s skill is ai, which is distributed N
�
0,s2

a
�
. For notation, let qa(·)

denote the percentiles of the ai distribution, calculated using s2
a. For example, if ai were

distributed standard normal, i.e., a ⇠ N (0,1), then qa(50%) = 0 and qa(97.5%) = 1.96.

With the point estimate of sa of 0.060, the marginal (worst) top-quartile BO firm has

an ai of qa(75%) = 4.05%, annually. And the median top-quartile firm has an ai of

qa(87.5%) = 6.90%. Hence, the spread between the marginal top- and bottom-quartile

firms, due to skill, is qa(75%)� qa(25%) = 8.09%, annually. This calculation, however,

assumes that the skill distribution is perfectly estimated. In Table IV, Specification I for

Buyout funds shows a standard error of 0.008 for the sa estimate. Our Bayesian esti-

mation procedure simulates the full posterior distribution of sa, and we can calculate the

corresponding posterior distribution of qa(75%)� qa(25%). The mean of this posterior

distribution, which also accounts for the estimation error in the skill distribution, is 7.93%,

as reported in Table IV. This estimate of 7.93% is close to the estimate of 8.09%, which was

calculated using the point estimate of sa without adjusting for the estimation error, and the

effect of this adjustment seems minor. Nevertheless, because the adjustment is simple to

calculate, all the reported alpha spreads in Table IV adjusts for estimation error in the skill

distribution.
6Testing for statistical significance of variance parameters is complicated by the asymmetric alternative

hypothesis. We use a Bayes factor test to test H0 : s2
a = 0 against HA : s2

a > 0, as reported in Table VII and
discussed in the Appendix.
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We estimate two alpha spreads: The interquartile range is the difference between the

marginal (worst) top-quartile and the marginal (best) bottom-quartile firms. It is denoted

qa(75%)�qa(25%), and our point estimate of this difference is 7.93%, annually. In other

words, the marginal BO firm with top-quartile skills outperform the marginal firm with

bottom-quartile skills by 7.93% annually. We also report the average difference in the

performance between the median top- and bottom-quartile firms, denoted qa(87.5%)�

qa(12.5%), and our estimate of this difference is 13.63%, annually.

Note that these alpha spreads cannot be calculated as the empirical difference between

the IRRs of top- and bottom-quartile funds, because top-quartile performance does not

imply top-quartile skills, so this empirical difference confounds skill and luck. If s2
e is

large, but s2
a is zero, there is no long-term persistence, and qa(75%)� qa(25%) is zero.

But a large s2
e still implies a large difference in fund performance, albeit due to noise, so the

empirical difference would still be large, and in this case it would overstate the performance

that is due to heterogeneous skills. The empirical difference may also understate long-term

persistence. In periods where a disproportionate number of high-quality (or low-quality)

firms are active, the empirical difference may be too small, because it is calculated from

funds in a narrow range of the ai distribution. For this reason, it is important that our model

includes PE firms that raise only a single fund. These firms are likely from the tail of the

ai distribution, so excluding them would lead to a downward bias in s2
a and underestimate

the long-term persistence.

Venture Capital For VC funds, the variance that is due to long-term persistence (100⇥

s2
a) is 0.243. This variance is similar to the one for BO funds, and therefore the alpha

spreads are also similar. Specifically, for VC firms, qa(87.5%)�qa(12.5%) = 11.17% and

qa(75%)�qa(25%) = 6.50%, annually. The variance due to the overlap effect (10⇥s2
h) is

0.675, which is somewhat larger than for BO funds, but this difference disappears with year

FEs. Importantly, there is a large difference between VC and BO funds in idiosyncratic

variance, which is 3–4 times larger for VC funds. Hence, even though the difference in

skills between good and bad firms is similar for VC and BO, the performance of VC firms

is much more noisy. This noise may also explain the weaker persistence results for VC
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funds using the AR(1) regression, because more noisy outcomes leads to weaker statistical

power in this model.

Other For Other funds, the overlap and long-term persistence effects are similar to those

of BO and VC funds. In Table IV, Specification I shows that sa is very close for Other and

VC funds, so their alpha spreads are almost identical: qa(87.5%)�qa(12.5%) = 11.21%

and qa(75%)�qa(25%) = 6.52%, annually. The idiosyncratic volatility, however, is lower

for Other funds.

Overall, these estimates of the long-term persistence, as measured by the performance

differences of high- and low-skilled funds, show that BO funds may have slightly more

long-term persistence than VC and Other funds, which are very similar, but the differences

in the economic magnitudes of these persistence estimates are modest. These alpha spreads

are calculated from the underlying true distribution of the skills of PE firms. For an LP to

earn the full spread, the LP must be able to perfectly assess these skills, and hence these

spreads represent an upper bound on the value of the persistence to the LPs.

C Overlap Effect

A partial overlap of funds induces correlation between subsequent funds. In Table IV,

Specifications I and II for BO firms show overlap effects of 0.216 and 0.432. This overlap

effect is easier to interpret with vintage-year FEs. Without time FEs, the hit terms cap-

ture all correlations between contemporaneous funds, including correlations due to general

market exposure. Funds that overlap are exposed to the same market returns during the

overlap period, and this leads to a correlation in their performance, but this correlation is

common across all PE firms, and it is not due to the actions of any particular firm. To

control for these common exposures, Specification II includes year fixed effects. With year

fixed effects, the overlap effect is isolated to funds that are managed by the same PE firm.

Comparing these specifications across fund types, we see that BO funds have the largest,

and Other funds have the smallest overlap effects.

This overlap effect is important, because the AR(1) regression of the performance of

fund N on fund N�1 will find a positive coefficient due to this effect, but this positive coef-
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ficient does not indicate persistence in the conventional sense. The descriptive statistics in

Table I shows average overlaps in the range 5.8–6.8 years. With this amount of overlap, the

variance estimates in Table IV imply that the covariance in the performance of funds with

average overlaps are in the range 0.37–0.64. But 25.8%–61.8% of this covariance is due to

the overlap, not long-term persistence, as measured by s2
a, suggesting that the magnitudes

of the estimated coefficients in the AR(1) regression may be upward biased by 34%–168%.

Moreover, this bias is smaller for Other firms, which have a smaller overlap effect, and this

smaller upward bias in the coefficient from the AR(1) regression may partially explain the

weaker persistence results for Other firms found using the AR(1) model.

IV Learning and Investable Persistence

The previous section considered long-term persistence, defined as the performance of funds

managed by PE firms with better skills, assuming that these skills are perfectly known. In

practice, however, it is difficult for LPs to identify skilled firms. For example, Phalippou

[2010] finds that the previous fund’s interim performance, which is the only performance

that is known when a subsequent fund is raised, is not statistically significant for predicting

the performance of the subsequent fund. In other words, the interim performance of the

previous fund, by itself, is insufficient for LPs to identify skilled PE firms. This finding

points to a more general question: For an LP to evaluate an investment in a new fund, how

much information does the LP need to determine the PE firm’s skill? If LPs only need little

information, such as just the interim performance of the previous fund, it would be easy for

them to identify the skilled PE firms, and we would say that PE performance has a large

amount of investable persistence.

We quantify the amount of investable persistence in two steps. First, we estimate the

signal-to-noise ratio. This ratio is simple to calculate, it allows for a direct comparison

of different types of firms, and it has a simple economic intuition based on the updating

of the LPs’ beliefs about a PE firm’s skills. The disadvantage is that this ratio does not

reflect all the features of the statistical model. Consequently, in the second step, we use

the full model to estimate how many past funds an LP must observe to assess the firm’s
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skill with reasonable certainty. Overall, we find that the signal-to-noise ratio is low, and

it is difficult for LPs to identify skilled PE firms based on their past performance alone.

An LP would need to observe an excessive number of past funds to evaluate an PE firm’s

skill with reasonable confidence. Additional information is needed, such as details about

individual deals, individual partners associated with these deals (see Ewens and Rhodes-

Kropf [2013]), or other additional information.

A Signal-to-Noise

Our model has two types of shocks: The transitory shocks are drawn independently each

period, as given by the hit and eu terms. The persistent shocks, reflecting the heterogeneous

skills of the PE firms, are given by ai. As noted above, we find that VC, BO, and Other

funds have similar amounts of long-term persistence, as measured by s2
a. But VC funds

have much greater transitory shocks. VC performance is more noisy, and it is more difficult

for LPs to identify skilled VC firms.

We define the signal-to-noise ratio, sa, as the ratio of persistent to total variation (e.g.,

Cochrane (1988) uses a similar variance ratio to study the persistence of GDP shocks):

sa =
100s2

a
s2

y
. (6)

In our application, this ratio has a simple economic interpretation. In a Gaussian learning

model, an LP would update its beliefs about the ai of a given PE firm as follows. Let the

LP’s prior beliefs be ai ⇠ N
�
a0,s2

0
�
, with a0 = 0, and the beliefs after observing N funds

is N
�
aN ,s2

N
�
. After observing one additional fund, the mean and variance of the LP’s

updated beliefs are then:

aN+1 = sa ⇥
(yi,N+1 �X 0

ub)
10

+(1� sa)⇥aN , (7)

and

s2
N+1 = (1� sa)⇥s2

N . (8)

Hence, the signal-to-noise ratio reflects how much weight an LPs should place on new
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information. When the ratio is low, new performance is largely uninformative about the

firm’s skills, and it is difficult for an LP to learn this skill. Conversely, the larger is sa, the

faster the LPs learns ai, as measured by a lower s2
N+1.

Figure 3 plots the estimated posterior distribution of sa for VC, BO, and Other firms.

For VC firms, the large idiosyncratic variance means that relatively little variation in fund

performance is due to long-term persistence, and VC performance is largely uninforma-

tive about the skills of VC firms. For BO firms, a greater fraction is due to long-term

persistence, making it easier to assess their skill. Other firms have the least idiosyncratic

variation, and the best signal-to-noise ratio, making it is easiest for LPs to identify skilled

Other firms.

** FIGURE 3: ESTIMATES OF SIGNAL-TO-NOISE RATIO **

B Identifying Skilled PE Firms

Using the estimated parameters in the full model, Figure 4 shows how quickly an LP can

identify the skills of a PE firm by observing the performance of the PE firm’s past funds.

To interpret Figure 4, consider first a limit case where there is no long-term persistence and

s2
a is zero. Some PE firms show top-quartile performance, but this performance is entirely

due to luck. Hence, without any persistence, the probability that a PE firm with top-quartile

skills also has top-quartile performance is just 25%. With some persistence, the probability

increases, and this probability is plotted in Figure 4.

With five past funds, a VC firm with top-quartile skills has a 37% probability of also

having top-quartile performance, as illustrated in Figure 4. While this is better than the

25% probability in the uninformative case, without any persistence, it is not much better.

For BO and Other firms, this probability increases to 47% and 51%. Figure 4 shows these

probabilities for up to 50 observed past funds. Since no current PE firm has 50 fully liqui-

dated independent funds, this case is an upper bound on the information that available from

past fund performance. Even for this upper bound, a VC firm with top-quartile skills has

just a 53% probability of showing top-quartile performance. In other words, if an LP that

invests in all VC firms with top-quartile performance, even after observing 50 past funds
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for each firm, then 47% of these VC firms do not actually have top-quartile skills. For BO

and Other PE firms, the corresponding probabilities improve to 58% and 60%.

** FIGURE 4: LEARNING SPEED **

C Investable Persistence

Combining the findings about long-term term persistence and the ability of LPs to identify

skilled firms provides a measure of the investable persistence. Other firms have the best

signal-to-noise ratio, and it is easiest for LPs to identify the skilled firms of this type. How-

ever, BO firms have greater long-term persistence than Other firms, so it is more valuable

to identify skilled BO firms. To combine these two effects, Figure 5 reports the expected

alpha that an LP earns when investing in the firms with top-quartile performance as a func-

tion of the number of observed funds. The more funds that the LP has observed, the better

the LP can identify the skilled firms, particularly for Other firms. Figure 5 shows that BO

has greater investable persistence than Other firms. The advantage of Other firms is that

they have less idiosyncratic risk, so past performance is more informative and it is easier

to identify the skilled firms. The advantage of BO firms is that they have greater long-term

persistence, so the value of identifying their skills is larger, even if the skilled firms are

harder to identify. VC firms, however, have weak investable persistence. They suffer both

from a high idiosyncratic risk, so skilled VC firms are difficult to identify, and from low

long-term persistence, making it less valuable to identify skilled VC firms.

** FIGURE 5: INVESTABLE PERSISTENCE **

V Subsamples

Table VI shows estimates of our model for different subsamples. To illustrate how we

calculate these estimates, when we compare persistence in large and small funds in the first

panel in Table VI, we divide the funds into two separate samples, and estimate the model

on each sample separately, so a PE firm that manages both small and large funds will be

20



represented in both samples, but only the small funds are included in the first estimation,

and no information from this first estimation is used in the second one.

** TABLE VI: SUB-SAMPLES **

Fund Size In Panel B of Table VI, the columns with 100s2
a, show that smaller funds

have greater long-term persistence than larger funds, across fund types. For VC and Buy-

out funds, the small ones also have more volatile performance, as indicated by s2
y . But

despite these more volatile performances, Panel A shows that the long-term performances

are sufficiently large that the signal-to-noise ratios are better for smaller funds, across all

types. For smaller funds, past performance is a better predictor of subsequent performance.

In contrast, larger funds have less long-term persistence and worse signal-to-noise ratios.

The worst ones are large VC funds, which have almost entirely uninformative performance.

GP Location Across PE firm types, Panel B in Table VI shows that there is more long-

term persistence for PE firms located in rest of world (“ROW”), with Europe second, and

least persistence for US-based PE firms. However, the total performance volatility also fol-

lows this pattern, and ROW performance is substantially more volatile than performance in

Europe or US. Comparing the informativeness of the performance, VC and Buyout perfor-

mance is most informative in Europe, whereas the performance of Other PE firms is more

informative in ROW. In fact, these Other PE firms in ROW have both the largest long-term

persistence and the most informativeness performance.

Investment Style We separate VC and Other funds into different investment styles, as

classified by Preqin. VC firms with funds focusing on early-stage investments have the

least long-term persistence and the least informative performance. Generalist VC firms

have slightly more persistence, but slightly less informative performance than VC firms

specialized in late-stage investments, which have much lower idiosyncratic volatility than

other types of VC investments.

For other funds, we distinguish real-estate funds from fund-of-funds. These two types

of funds are very different, but they have surprisingly similar persistence characteristics.
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The differences are that fund-of-funds have slightly greater long-term persistence, and the

performance of real-estate funds is slightly more informative.

Time Period We confirm the finding by Braun, Jenkinson, and Stoff [2013] and Harris,

Jenkinson, Kaplan, and Stucke [2013], that persistence has declined over the sample pe-

riod. Table VI reports persistence estimates in the earlier and later half of our sample. This

decline is particularly pronounced for VC funds, were both the amount of long-term persis-

tence and the performance informativeness have almost vanished. For buyout funds, there

is still substantial persistence and informativeness. Recently, however, the performance of

other funds is most informative, even if they show slightly lower long-term persistence than

Buyout funds.

VI Conclusion

We decompose private equity (“PE”) performance into skill and luck. When performance is

noisy, PE firms with top-quartile skills will not necessarily show top-quartile performance,

and this distinction leads to two different notions of performance persistence. The first

type, long-term persistence, reflects the performance differences between funds managed

by skilled and unskilled PE firms. Across all types of PE firms, we find a large amount

of long-term persistence, and skilled firms outperform by 7% to 8% annually. The second

type of persistence is investable persistence. It reflects the ability of LPs to identify skilled

PE firms using information about their past performance. We find that past performance

is very noisy, it has a large component of luck and a poor signal-to-noise ratio, making

it difficult for LPs to identify skilled firm. VC firms, in particular, have poor investable

persistence. To identify skilled PE firms, LPs need information beyond what is contained

in the performance of a PE firm’s past funds.

Subsamples Comparing subsamples, we find that smaller funds have greater persistence

than larger funds. In particular, large VC funds have poor long-term and investable persis-

tence. Across geographical locations of PE firms, we find the least persistence for PE firms

located in the US, followed by Europe, and the greatest persistence for PE firm located
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in the rest of the world (“ROW”), although these PE firms also have more volatile perfor-

mance. Finally, we confirm the finding by Harris, Jenkinson, Kaplan, and Stucke [2013]

and Braun, Jenkinson, and Stoff [2013] that persistence has declined in the 2000s relative

to the 1990s. This decline is largest for VC firms, though, and we find that Buyout and

Other funds still show substantial long-term persistence, even post 2000.

Implications Our results have three implications for understanding PE performance:

First, the low investable persistence explains LPs’ increasing interest in collecting more de-

tailed information about PE performance. For example, Ewens and Rhodes-Kropf [2013]

study performance using deal- and partner-level information. We show that such detailed

information is necessary for LPs to identify top PE firms. Second, our results provide an

alternative explanation of why persistent outperformance is not competed away. When

identifying skilled PE firms is difficult, LPs with this ability may also be scarce, and LPs

with this ability should earn rents. Third, the large idiosyncratic risk and lower skill com-

ponents of VC performance is consistent with the anecdotal saying among VCs that “I’d

rather be lucky than smart.”
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Appendix: Estimation Procedure

We implement the model as a Bayesian multi-level hierarchical model, redefining the error

terms to absorb the firm-specific random effects using hierarchical centering, as recom-

mended by Gelfand, Sahu, and Carlin (1995). The performance of fund u of firm i is:

yiu = Xiub+
tiu+9

Â
t=tiu

hit + eiu, (9)

The conditional distributions of the random effects are given as:

hit|ai ⇠ N
�
ai,s2

h
�
, (10)

ai ⇠ N
�
0,s2

a
�
. (11)

The fund-specific error term distribution is IID

eiu ⇠ N
�
0,s2

e
�
. (12)

We are interested in estimating the parameter vector q ⌘
�
b,s2

a,s2
h,s2

e
�
, given a dataset

of fund returns, {yiu}, the dates of inception and termination of each fund, and the set of

observed fund-level covariates, Xiu. We augment the parameter vector with the latent a’s

and the h0s, and use a Bayesian estimation algorithm that produces a set of draws from the

posterior distribution, f (q,{ai} ,{hit}|data), using a Gibbs sampler (Gelfand and Smith,

1990. See also Korteweg, 2013, for a detailed description). By the Hammersley-Clifford

theorem, we can divide the posterior into five complete conditionals that are easy to sample

from:

1. Latent firm-year random effects: f ({hit}|{ai} ,q,data)

2. Variance of fund-specific error term and b-coefficients: f
�
s2

e ,b|{ai} ,{hit} ,s2
a,s2

h,data
�

3. Latent firm random effects: f ({ai}|{hit} ,q,data)

4. Variance of firm-year random effects: f
�
s2

h|{ai} ,{hit} ,b,s2
a,s2

e ,data
�

5. Variance of firm random effects: f
�
s2

a|{ai} ,{hit} ,b,s2
h,s2

e ,data
�
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We sample from each distribution 1 through 5 in turn, after which we return back to step 1

and repeat. The resulting sequence of parameter draws forms a Markov chain, the station-

ary distribution of which is exactly the posterior distribution. Given a sample of draws of

the posterior distribution, it is then straightforward to numerically integrate out the latent

variables and obtain the marginal posterior of parameters, f (q|data), or the distribution of

the random effects, f ({ai}|data) and f ({hit}|data), for example. We now discuss how

to draw from each conditional distribution.

A1 Latent firm-year random effects

The firm-year random effects, hit , are simulated using a Bayesian regression of the fund

returns on a set of year indicator variables, with known variance. This is done on a firm-

by-firm basis, as the random effects are assumed independent across firms (and time). For

each firm, i, the regression model takes the form

yi = Xib+Zihi + ei, (13)

where yi is a vector of stacked fund returns for the Ui funds of firm i, and Xi is the sub-

matrix of the covariates
h
X

0
i1 . . .X

0
iUi

i0
for which each row correspond to a fund of firm i.

The vector hi contains the firm-year random effects for the years in which firm i has at

least one active fund. The length of the vector hi is denoted Ti, and may vary by firm. The

matrix Zi is a Ui ⇥Ti matrix of indicator variables. Each row represents a fund of firm i,

and contains ones in the columns that correspond to the years that the fund is active, and

zeros in all other columns.

Given the prior in equation (10), and using the standard Bayesian regression setup (e.g.,

Rossi, Allenby, and McCulloch, 2005), the posterior distribution is

hi|{ai} ,q,data ⇠ N
�
µh,s2

eW�1� , (14)
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where

W =
s2

e
s2

h
· ITi +Z0

iZi (15)

µh = W�1

 
ai ·

s2
e

s2
h
·1Ti +Z0

i(yi �Xib)

!
, (16)

where ITi is the Ti ⇥Ti identity matrix, and 1Ti a Ti ⇥1 vector of ones.

A2 Variance of fund-specific error term and b-coefficients

Given the conditioning on the random effects, hit , this step is a standard Bayesian regres-

sion. With the conjugate prior

s2
e ⇠ IG(a0,b0) (17)

b|s2
e ⇠ N

⇣
µ0,s2

eS�1
0

⌘
, (18)

the posterior distribution is

s2
e |{hi} ,data ⇠ IG(a,b) (19)

b|s2
e ,{hi} ,data ⇠ N

�
µ,s2

eS�1� , (20)

where

a = a0 +
N

Â
i=1

Ui (21)

b = b0 + e0e+(µ�µ0)S0 (µ�µ0) (22)

S = S0 +X 0X (23)

µ = S�1 ·
�
S0µ0 +X 0 (y�Zh)

�
. (24)

The vector y =
h
y
0
i . . .y

0
N

i0
contains the fund returns stacked across the N firms, X is the

matrix of stacked Xi and Z the stacked Zi. The vector e = y�Zh�Xµ contains the stacked

error terms .
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A3 Latent firm random effects

Drawing the firm random effects, ai, is similar in spirit to simulating the firm-year random

effects in step 1. Write the estimation problem as a regression of the firm-year random

effects on a set of indicator variables

h =Wa+n, (25)

where h = [h1 . . .hN ]
0, and a = [a1 . . .aN ]

0, and n ⇠ N
�
0,s2

h · IN
�
. The matrix W is a

ÂN
i=1 Ti ⇥N matrix of indicator variables. Each row of W represents a firm-year, and con-

tains a one in the column of the corresponding firm, and zeros in all other columns.

With the prior in equation (11), the posterior distribution is

a|{hit} ,q,data ⇠ N
�
µa,s2

hA�1� , (26)

where

A =
s2

h
s2

a
· IN +W 0W (27)

µa = A�1 �W 0h
�
. (28)

A4 Variance of firm-year random effects

The variance of the firm-year random effects, s2
h, is the variance of the residuals v = h�

Wa from the regression in step 3. Using the inverse gamma prior

s2
h ⇠ IG(c0,d0) , (29)

yields the posterior distribution

s2
h|{ai} ,{hi} ,data ⇠ IG(c,d) , (30)
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where

c = c0 +
N

Â
i=1

Ti (31)

d = d0 + v0v. (32)

A5 Variance of firm random effects

The variance of the firm random effects, s2
a, using the inverse gamma prior

s2
a ⇠ IG( f0,g0) , (33)

has posterior distribution

s2
a|{ai} ,data ⇠ IG( f ,g) , (34)

with parameters:

f = f0 +N, (35)

g = g0 +a0a. (36)

A6 Mixture of Normals Specification

For the mixtures of Normals specification we replace the distribution of the fund-specific

error term in equation (12), with a mixture of K Normal distributions,

eiu ⇠
K

Â
k=1

pk·N
⇣

µk,s2
e,k

⌘
. (37)

Setting K=1 reduces the model to the baseline Normal specification in (12). We drop the in-

tercept in Xiu because it is absorbed by the error term, which has mean E [eiu] = ÂK
k=1 pkµk.

This specification is equivalent to the specification with an intercept in Xiu and zero mean

erroreiu, but it is easier to implement because it avoids enforcing cross-parameter restric-
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tions on the µk. To estimate the mixture model by Gibbs sampler, the procedure requires

one more latent variable that indicates which of the K Normal distributions each observa-

tion is drawn from. Conditional on this indicator, the Gibbs steps described above remain

largely unchanged. For details on estimation of the latent indicator and the parameters of

the mixture components we refer to West (1992), Diebolt and Robert (1994), and Chen and

Liu (2000).

A7 Priors and Starting Values

Our Gibbs sampler uses 10,000 iterations for the initial burn-in, followed by 100,000 it-

erations to simulate the posterior distribution. During the burn-in phase, the simulations

converge quickly. We use diffuse prior distributions for the parameters, so that our results

are driven by the data rather than prior assumptions. First, we set a0 = 2.1, and b0 = 1. This

implies that our prior belief is that E[sve] = 0.854, and that se is between 0.362 and 2.874

with 99% probability (note that this is for ten-year fund returns, so the annualized volatility

is about a factor 3 lower). Second, we set c0 = f0 = 2.1, and d0 = g0 = 0.152. Since both

the a0s and h’s are specified at the annual level, this implies that E[sa] = E[svh] = 0.128 per

year, and sa and svh are between 0.054 and 0.431 (annually) with 99% probability. Condi-

tional on X , the prior ten-year fund return variance, 100s2
a + 10s2

h +s2
e , has an expected

value of 1.658, and is between 0.861 and 4.666 with 99% probability. Finally, we set the

prior mean for b equal to zero (µ0 = 0), implying a prior mean fund return of zero. We set

S0 equal to the identity matrix, so that the prior b’s are between -3.1 and +3.1 with 99%

probability.

For the mixtures of Normals specifications we set the prior of each mixture component,

1 . . .K, equal to the prior of the error term e in the Normal model, i.e., mean zero and Inverse

Gamma prior parameters equal to a0and b0. This ensures that the prior distribution of y is

the same across all K, so that the Bayes Factor (see below) is a valid comparison across

different mixtures. The prior distribution of the mixture probabilities, p, is the conjugate

Dirichlet distribution, Dir (K,d), with d = 1K ·10 . This implies that all distributions in the

mixture have equal prior mean probability, 1/K.

We start the algorithm with all a’s and b’s equal to zero (their prior means). We initial-
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ize all variances (s2
a,s2

h, and s2
e) at their prior means. For the mixtures specification, we

set the mixture probabilities to their prior mean, 1/K. We do not need starting values for

the h’s, since they are the first variables we simulate.
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Figure 1: Vintage Year Fixed Effects. Plots of the posterior mean of the vintage years fixed effects from 
Specification II in Table IV. The vintage year effects are for transformed to IRR equivalents (annualized, 
in percent). The shaded bands represents the (1%, 99%) Bayesian credible interval (confidence bounds).  
The broken line shows the average IRR calculated annually. 
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Figure 2: Fund Overlap and Covariance.  The figure shows the covariance between total fund returns 
as a function of the overlap (in years) between two funds managed by the same firm, using the variance 
estimates for Specifications II in Table IV. 
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Figure 3: Estimates of Signal-to-Noise Ratio.  Histograms of the estimated posterior distribution of the 
signal-to-noise ratio, !!, by fund type, from the specifications reported in Table IV. The solid line is the 
kernel plot for specification I (without year fixed effects), and the broken line is the kernel plot for 
specification II (with year fixed effects).  
 
Panel A: VC 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Buyout 
 
 
 
 
 
 
 
 
 
 
 
 
Panel C: Other 
 
 
 



5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 

 

VC
Buyout
Other

Figure 4: Speed of Learning. Graph of the posterior probability that a fund is in the top quartile of 
funds. Probabilities are calculated from 100,000 simulated firms, each with a different alpha that is drawn 
from the top 25% of the distribution. For each firm the simulation draws a sequence of 50 non-
overlapping fund returns. Reported probabilities are averages of the posterior mean probability across the 
simulated firms after observing a given number of realized fund returns for each firm (Fund history, on 
the horizontal axis). The figure uses the parameter estimates from Table IV specification II, with vintage 
year fixed effects.  
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Figure 5: Investable Persistence. This figure shows the expected alpha of investing in funds raised by 
PE firms with top-quartile performance depending on the number of observed fund returns for the firm 
(Fund history). The expected alpha is calculated from 100,000 simulations of fund histories, using the 
parameter estimates from Table IV specification II, with year fixed effects.  
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Figure 6: Marginal Log-likelihood. Plots of the marginal log-likelihood as a function of the number of 
Normal mixtures in the error term distribution, by fund type. The solid line represents specification I of 
Table IV (which has no vintage year fixed effects), and the striped line represents specification II (with 
vintage year fixed effects). 
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Table I: Summary Statistics. Descriptive statistics of the sample of private equity funds, by fund type 
(VC, Buyout, or Other). The sample contains 1,924 fully-liquidated funds raised between 1969 and 2001, 
with at least $5 million in committed capital (in 1990 dollars) and with non-missing returns data. The 
funds are raised by 831 individual PE firms (some firms manage funds of more than one fund type). Fund 
size is the committed capital in millions of dollars. IRR is the fund’s internal rate of return, net of fees 
(where 0.1 represents a 10% return). The Ten-year log return is computed as 10 ⋅ ln 1 + !"" . Overlap 
is the number of years of overlap for funds of the same firm and type that overlap. Source: Preqin. 

Panel A: Broad fund categories 
      VC   Buyout   Other 
# Funds 

 
842 

 
562 

 
518 

# Firms 
 

409 
 

285 
 

197 
# Funds / firm 

     
 

Mean 2.059 
 

1.972 
 

2.629 
 Median 1  1  2 

 
Std. dev. 1.941 

 
1.563 

 
2.575 

 
10th percentile 1 

 
1 

 
1 

 90th percentile 4  4  5 
Fund size ($m) 

     
 

Mean 206.900 
 

694.073 
 

373.269 
 Median 110.000  300.000  206.750 

 
Std. dev 276.130 

 
1,035.595 

 
517.109 

 
10th  percentile 27.008 

 
52.576 

 
32.965 

 90th percentile 500.000  1,823.556  863.000 
IRR 

       
 

Mean 0.177 
 

0.169 
 

0.139 
 Median 0.086  0.149  0.119 

 
Std. dev. 0.548 

 
0.186 

 
0.129 

 
10th percentile -0.104 

 
-0.017 

 
0.004 

 90th percentile 0.460   0.379   0.289 
Ten-year log return      
 Mean 1.173  1.438  1.245 
 Median 0.825  1.385  1.124 
 Std. dev. 2.623  1.552  1.075 
 10th percentile -1.101  -0.170  0.040 
 90th percentile 3.786  3.216  2.542 
Overlap (years)      
 # fund pairs 891  512  968 
 Mean 5.819  5.795  6.769 
 Median 6  6  7 
 Std. dev. 2.454  2.305  2.338 
 10th percentile 2  2  3 
 90th percentile 9  9  9 



Panel B: Fund sub-categories 

  
# funds # firms  Fund size  IRR 

    
 mean median  mean median std. dev. 

VC 
   

 
  

 
   

 
Early-stage 177 105  186.151 92.000  0.237 0.069 0.908 

 
Late-stage 153 89  289.026 154.000  0.123 0.105 0.170 

 
Generalist 512 239  187.470 104.000  0.172 0.085 0.447 

    
 

  
 

   Other 
   

 
  

 
   

 
Real estate 202 86  389.251 263.000  0.138 0.129 0.097 

 
Fund-of-funds 144 48  349.316 138.340  0.112 0.083 0.137 

 
Distressed Debt 36 14  662.069 438.000  0.146 0.140 0.108 

 
Natural Resources 58 25  265.372 154.750  0.170 0.152 0.157 

 
Secondaries 34 12  336.842 263.500  0.168 0.150 0.122 

 

Infrastructure, 
Turnaround, Special 
Situations, Co-
Investments, Venture 
Debt 44 26 

 

292.975 150.000 

 

0.169 0.130 0.186 
 

  



Table II: Fund Internal Rates of Return by Vintage Year. This table shows the number of private equity funds in the sample, and their internal 
rates of return, by vintage year and fund type (VC, Buyout, and Other). The sample comprises 1,924 fully-liquidated funds over the period 1969 to 
2001, with at least $5 million in committed capital (in 1990 dollars) and non-missing returns data. Weighted average IRRs are based on funds for 
which size data is available. Source: Preqin. 

  VC   Buyout   Other 

  
IRR (in %) 

  
IRR (in %) 

  
IRR (in %) 

Vintage Funds Avg. Median Weighted 
 

Funds Avg. Median Weighted 
 

Funds Avg. Median Weighted 
year    Avg. 

 
   Avg. 

 
   Avg. 

1969 1 8.7 8.7 8.7 
 

0 - - - 
 

0 - - - 
1970 0 - - - 

 
0 - - - 

 
0 - - - 

1971 0 - - - 
 

0 - - - 
 

0 - - - 
1972 1 21.5 21.5 21.5 

 
0 - - - 

 
0 - - - 

1973 0 - - - 
 

0 - - - 
 

0 - - - 
1974 0 - - - 

 
0 - - - 

 
0 - - - 

1975 0 - - - 
 

0 - - - 
 

0 - - - 
1976 0 - - - 

 
0 - - - 

 
0 - - - 

1977 0 - - - 
 

1 35.5 35.5 35.5 
 

0 - - - 
1978 2 48.6 48.6 51.0 

 
0 - - - 

 
0 - - - 

1979 1 18.5 18.5 18.5 
 

1 19.4 19.4 19.4 
 

1 18.0 18.0 18.0 
1980 6 16.5 14.0 25.9 

 
3 23.7 25.8 25.7 

 
1 12.0 12.0 12.0 

1981 7 18.9 11.3 19.1 
 

0 - - - 
 

2 11.1 11.1 - 
1982 11 13.8 9.3 19.3 

 
1 39.2 39.2 39.2 

 
1 10.0 10.0 10.0 

1983 12 9.8 9.3 9.4 
 

2 21.9 21.9 21.4 
 

3 14.7 5.9 36.5 
1984 20 12.3 12.0 12.0 

 
7 30.4 18.4 30.4 

 
1 7.1 7.1 7.1 

1985 21 13.1 13.0 14.9 
 

4 13.4 10.7 17.9 
 

4 4.4 2.7 15.3 
1986 20 9.5 8.5 9.3 

 
12 27.6 18.8 25.6 

 
3 4.0 4.0 8.5 

1987 22 13.4 14.8 12.6 
 

9 16.8 18.9 9.7 
 

8 8.9 8.3 10.7 
1988 26 20.8 21.4 27.0 

 
12 19.2 14.2 14.6 

 
6 10.9 11.6 9.0 

1989 35 22.0 16.4 30.1 
 

12 29.8 27.5 28.6 
 

8 13.6 11.1 14.7 
1990 24 15.1 16.5 17.6 

 
23 19.2 15.4 15.5 

 
10 16.8 16.0 27.6 



1991 18 23.1 21.1 27.2 
 

10 28.0 25.2 28.4 
 

10 15.5 12.2 18.3 
1992 30 21.8 16.0 24.3 

 
21 18.3 21.2 31.5 

 
15 18.0 16.3 21.1 

1993 36 32.6 29.5 35.9 
 

23 19.2 16.9 19.7 
 

16 23.2 19.8 24.6 
1994 30 30.0 25.5 38.2 

 
36 25.9 21.5 35.5 

 
18 15.9 14.0 10.1 

1995 41 45.2 17.5 42.5 
 

33 17.1 17.6 15.8 
 

30 16.8 17.0 17.6 
1996 43 29.3 10.3 21.3 

 
35 17.4 10.4 11.4 

 
45 17.3 12.7 14.9 

1997 62 42.8 20.6 37.6 
 

54 11.6 9.0 9.3 
 

45 11.5 8.4 10.8 
1998 73 36.6 7.0 25.0 

 
73 6.7 8.3 5.7 

 
65 11.2 8.3 11.7 

1999 95 -2.5 -3.5 -3.4 
 

57 8.6 8.5 7.1 
 

58 10.1 9.3 8.1 
2000 120 0.1 -0.9 -0.2 

 
90 16.8 17.5 16.3 

 
80 12.1 12.4 13.4 

2001 85 2.4 1.0 2.9   43 27.1 28.0 28.0   88 17.0 15.2 22.3 
Average 842 20.2 14.9 21.1   562 21.4 19.6 21.4   518 13.0 11.4 16.4 

  



Table III: IRR Regressions. The table shows AR(1) regressions using fund IRRs, by fund type. In panel A, IRRi,N-1 is the IRR of the most recent 
fund of the same type (VC, Buyout, Other) and the same firm, and IRRi,N-2 is the IRR of the second previous fund. In Panel B, IRRi,N-1 is the net 
IRR on the most recent, non-overlapping fund of the same type and the same firm. All regressions include vintage year fixed effects. Standard 
errors are clustered by firm, and are shown in brackets. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A: IRR Regressions  

               
  

VC 
 

Buyout 
 

Other 

  
I   

 
II   

 
I   

 
II   

 
I   

 
II   

IRRi,N-1 
 

0.125 
  

0.263 
  

0.315 
  

0.304 
  

0.275 
  

0.149 
 

  
(0.075) * 

 
(0.065) *** 

 
(0.069) *** 

 
(0.075) *** 

 
(0.096) *** 

 
(0.107) 

 
                   IRRi,N-2 

    
-0.059 

     
0.156 

     
0.108 

 
     

(0.066) 
     

(0.103) 
     

(0.113) 
 

                   Log(Fund size) 1.492 
  

2.988 
  

-0.189 
  

-0.237 
  

0.439 
  

0.128 
 

  
(1.775) 

  
(2.862) 

  
(0.786) 

  
(1.014) 

  
(0.694) 

  
(0.955) 

 
                   Log(Fund sequence) 7.510 

  
1.741 

  
1.872 

  
3.020 

  
-1.476 

  
5.945 

 
  

(3.616) ** 
 

(6.678) 
  

(3.188) 
  

(3.966) 
  

(1.773) 
  

(2.947) ** 

                   Year fixed effects Yes 
  

Yes 
  

Yes 
  

Yes 
  

Yes 
  

Yes 
 N 

 
411 

  
232 

  
255 

  
133 

  
243 

  
139 

 R2 
 

0.250 
  

0.282 
  

0.366 
  

0.488 
  

0.200 
  

0.195 
   



Panel B: Non-overlapping funds 
   

  
VC 

 
Buyout 

 
Other 

IRRi,N-1 
 

0.044 
  

0.190 
  

-0.488 
 

  
(0.058) 

  
(0.194) 

  
(0.219) * 

          Log(Fund size) 3.603 
  

0.316 
  

0.545 
 

  
(3.265) 

  
(4.078) 

  
(2.886) 

 
          Log (Fund sequence) -1.684 

  
-3.694 

  
-9.273 

 
  

(11.747) 
  

(11.228) 
  

(9.713) 
 

          Year fixed effects Yes 
  

Yes 
  

Yes 
 N 

 
146 

  
59 

  
31 

 R2   0.211     0.182     0.518   
 



Table IV: Parameter Estimates. This table reports parameter estimates of the model described in the 
text. The error term !!" is a mixture of ! normal distributions, chosen as the best fit according to the 
marginal log-likelihood. The vector ! includes either a single intercept (specification I) or vintage year 
fixed effects, grouping the pre-1985 vintages into one bucket (specification II). The model is estimated 
separately for each fund type (Venture Capital, Buyout, Other), by Markov chain Monte Carlo (MCMC) 
using 10,000 burn-in cycles followed by 100,000 samples, saving every 10th draw. Panel A shows the 
parameter estimates, and panel B shows the variance decomposition estimates for the same parameters. 
Posterior standard deviations (Bayesian standard errors) are in brackets. Panel C shows the alpha spreads 
across percentiles of the posterior distribution. 

 
VC 

 
Buyout 

 
Other 

 
I 

 
II 

 
I 

 
II 

 
I 

 
II 

Panel A: Parameter estimates           
σα 0.049 

 
0.055 

 
0.060 

 
0.056 

 
0.049 

 
0.049 

 
(0.007) 

 
(0.008) 

 
(0.008) 

 
(0.008) 

 
(0.006) 

 
(0.006) 

            

ση 0.258 
 

0.193 
 

0.142 
 

0.203 
 

0.202 
 

0.135 

 
(0.031) 

 
(0.037) 

 
(0.039) 

 
(0.043) 

 
(0.028) 

 
(0.028) 

            

σε 2.449 
 

2.326 
 

1.359 
 

1.225 
 

0.807 
 

0.865 

 
(0.123) 

 
(0.121) 

 
(0.058) 

 
(0.073) 

 
(0.039) 

 
(0.050) 

                        

Panel B: Variance decomposition:          
100⋅σα2 0.243  0.309  0.361  0.316  0.244  0.246 
 (0.067)  (0.087)  (0.094)  (0.089)  (0.065)  (0.061) 
            

10⋅σ!2  0.675  0.386  0.216  0.432  0.416  0.189 
 (0.158)  (0.141)  (0.113)  (0.160)  (0.111)  (0.076) 
            

σ!2 6.015  5.426  1.852  1.505  0.654  0.751 
 (0.604)  (0.567)  (0.159)  (0.180)  (0.064)  (0.087) 
            

σy2 6.933 
 

6.120 
 

2.428 
 

2.253 
 

1.314 
 

1.186 

 
(0.596) 

 
(0.561) 

 
(0.152) 

 
(0.168) 

 
(0.084) 

 
(0.090) 

            

Panel C: Spread in α:       
qα(75%)-qα(25%)   6.50%  7.31%  7.93%  7.40%  6.52%  6.57% 
qα(87.5%)-qα(12.5%) 11.17%  12.58%  13.63%  12.73%  11.21%  11.29% 
                        

Vintage FE N 
 

Y 
 

N 
 

Y 
 

N 
 

Y 
K 3 

 
3 

 
2 

 
2 

 
1 

 
3 

N 842 
 

842 
 

562 
 

562 
 

518 
 

518 
  



Table V Speed of Learning. This table shows the expected alpha of investing in the top quartile of a 
universe of 100 PE firms, after observing a history of non-overlapping funds of a given length (Fund 
history). The expected alphas are calculated from 100,000 simulations of 100 firms, and reported after 
observing a sequence of 1 through 25 funds for each firm. The three left-most columns use the parameter 
estimates from Table IV specification I (which has no vintage year fixed effects), and the three right-most 
columns show specification II (with vintage year fixed effects).  For each model, the table shows the 
expected true ! of investing in the top quartile of firms, the probability of achieving a true alpha higher 
than zero, the probability of attaining a higher true alpha compared to a strategy of random allocations to 
funds, and expected true ! from a strategy of going long the top quartile and short the bottom quartile of 
funds. 

 
Without vintage year FE 

 
With vintage year FE 

Fund 
history 

E[α] top 
quartile 

Prob(α>0) Prob(α > 
random) 

E[α] top 
-bottom 
quartile 

 E[α] top 
quartile 

Prob(α>0) Prob(α > 
random) 

E[α] top 
-bottom 
quartile 

Panel A: VC 
  

 
    

 

1 1.15% 88.1% 82.0% 2.30%  1.54% 92.1% 86.4% 3.08% 
2 1.60% 95.1% 90.1% 3.20%  2.13% 97.6% 93.8% 4.26% 
3 1.93% 97.8% 92.7% 3.86%  2.55% 99.2% 95.8% 5.10% 
4 2.19% 99.0% 96.3% 4.38%  2.88% 99.7% 98.3% 5.77% 
5 2.41% 99.5% 97.4% 4.83%  3.16% 99.9% 98.9% 6.31% 

10 3.18% 100.0% 100.0% 6.36%  4.06% 100.0% 100.0% 8.12% 
25 4.25% 100.0% 100.0% 8.50%  5.22% 100.0% 100.0% 10.43% 

          
Panel B: Buyout 

  
 

 
 

  
 

1 2.92% 99.5% 97.5% 5.84%  2.65% 99.3% 97.1% 5.29% 
2 3.85% 100.0% 99.6% 7.71%  3.50% 100.0% 99.5% 7.01% 
3 4.44% 100.0% 99.8% 8.88%  4.05% 100.0% 99.8% 8.10% 
4 4.86% 100.0% 100.0% 9.72%  4.44% 100.0% 100.0% 8.88% 
5 5.17% 100.0% 100.0% 10.34%  4.74% 100.0% 100.0% 9.47% 

10 6.04% 100.0% 100.0% 12.07%  5.56% 100.0% 100.0% 11.12% 
25 6.82% 100.0% 100.0% 13.64%  6.33% 100.0% 100.0% 12.65% 

          
Panel C: Other 

  
 

 
 

  
 

1 2.88% 99.9% 99.0% 5.76%  2.80% 99.9% 99.0% 5.59% 
2 3.72% 100.0% 99.9% 7.44%  3.60% 100.0% 99.9% 7.20% 
3 4.21% 100.0% 100.0% 8.43%  4.08% 100.0% 100.0% 8.16% 
4 4.55% 100.0% 100.0% 9.10%  4.40% 100.0% 100.0% 8.80% 
5 4.80% 100.0% 100.0% 9.59%  4.64% 100.0% 100.0% 9.27% 

10 5.44% 100.0% 100.0% 10.87%  5.24% 100.0% 100.0% 10.48% 
25 5.97% 100.0% 100.0% 11.94%  5.74% 100.0% 100.0% 11.49% 



Table VI: Sub-samples. This table shows estimates of signal-to-noise ratio, sα, for different subsamples. The columns labeled mean and std. dev. 
report the posterior mean and standard deviation of the variance decomposition, respectively. IQR is the interquartile range of the posterior 
distribution of  sα, i.e., the spread in between the 75th and 25th percentile of the posterior distribution. N is the number of funds in the subsample. 
The estimates are based on model specification II in Table IV (which includes vintage year fixed effects).  The top row corresponds to the signal-
to-noise ratio of the full sample, as depicted in Figure 4. The number of funds in the fund size sub-samples do not add up to the number of funds in 
the full sample, because size is not observed for some funds. 

Panel A: Signal-to-noise 

   
VC 

 
Buyout 

 
Other 

   mean std. 
dev. 

IQR N  mean std. 
dev. 

IQR N  mean std. 
dev. 

IQR N 

Full sample 
 

0.051 0.015 0.020 842 
 

0.141 0.040 0.053 562 
 

0.208 0.048 0.065 518 
Fund size 

   
 

    
 

    
 

 
 

Small (< median) 0.111 0.043 0.057 373 
 

0.183 0.068 0.096 261 
 

0.291 0.103 0.146 210 

 
Large (>= median) 0.051 0.022 0.028 374 

 
0.123 0.049 0.064 270 

 
0.168 0.056 0.077 210 

GP location 
   

 
    

 
    

 
 

 
US 

 
0.051 0.020 0.027 675 

 
0.140 0.065 0.092 416 

 
0.079 0.042 0.050 439 

 
Europe (incl. UK) 0.180 0.079 0.110 93 

 
0.269 0.081 0.112 113 

 
0.310 0.116 0.159 59 

 
ROW 

 
0.057 0.036 0.042 74 

 
0.083 0.058 0.061 33 

 
0.584 0.187 0.292 20 

Style 
   

 
    

 
    

 
 

 
Early-stage 0.023 0.011 0.013 177 

 
- - - - 

 
- - - - 

 
Late-stage 0.141 0.063 0.080 153 

 
- - - - 

 
- - - - 

 
Generalist 0.067 0.029 0.040 512 

 
- - - - 

 
- - - - 

 
Real Estate - - - - 

 
- - - - 

 
0.222 0.061 0.084 202 

 
Fund-of-Funds - - - - 

 
- - - - 

 
0.173 0.061 0.080 144 

Sample period 
   

 
    

 
    

 
 

 
Early (< 1997) 0.108 0.035 0.047 407 

 
0.211 0.091 0.129 245 

 
0.271 0.088 0.125 227 

 
Late (>= 1997) 0.040 0.016 0.021 435 

 
0.178 0.058 0.080 317 

 
0.243 0.066 0.091 291 

  

  



Panel B: Long-term Persistence 

   
VC 

 
Buyout 

 
Other 

   100σα2  10σ!2  σy2 qα(75%)-
qα(25%) 

 100σα2  10σ!2  σy2 qα(75%)-
qα(25%) 

 100σα2  10σ!2  σy2 qα(75%)-
qα(25%) 

Full sample 
 

0.309 0.386 6.120 7.31% 
 

0.316 0.432 2.253 7.40%  0.246 0.189 1.186 6.57% 

   
    

 
         

Fund size 
 

    
 

         

 
Small (< median) 0.823 0.522 7.537 11.62% 

 
0.489 0.207 2.667 8.96%  0.326 0.245 1.110 7.31% 

 
Large (>= median) 0.239 0.328 4.808 6.26% 

 
0.234 0.452 1.107 6.21%  0.203 0.086 1.217 5.85% 

   
    

 
         

GP location 
 

    
 

         

 
US 

 
0.300 0.339 5.897 7.06% 

 
0.286 0.438 2.046 6.63%  0.089 0.319 1.130 3.69% 

 
Europe (incl. UK) 0.491 0.151 2.743 8.79% 

 
0.427 0.146 1.578 8.47%  0.327 0.121 1.031 7.18% 

 
ROW 

 
0.562 0.258 10.465 9.15% 

 
0.444 0.152 5.643 7.98%  1.434 0.180 2.306 14.42% 

   
    

  
 

    
 

  Style 
 

    
  

 
    

 
  

 
Early-stage 0.217 0.106 9.866 5.93% 

 
- - - - 

 
- - - - 

 
Late-stage 0.272 0.272 1.949 6.63% 

 
- - - - 

 
- - - - 

 
Generalist 0.377 0.386 5.674 7.82% 

 
- - - - 

 
- - - - 

 
Real Estate - - - - 

 
- - - - 

 
0.149 0.079 0.674 5.07% 

 
Fund-of-Funds - - - - 

 
- - - - 

 
0.182 0.074 1.056 5.51% 

    
 

    
 

    
 

  Sample period 
  

 
    

 
    

 
  

 
Early (< 1997) 0.529 0.429 4.947 9.49% 

 
0.611 0.372 2.879 9.83%  0.338 0.123 1.239 7.50% 

 
Late (>= 1997) 0.288 0.117 7.383 6.90% 

 
0.303 0.156 1.709 7.16%  0.279 0.097 1.143 6.92% 



Table VII: Model Specification Tests. This table shows tests of the model specification. Column I 
reproduces specification I of Table IV. Column II drops the transient firm effect, !, from the model, and 
Column III drops the long-run firm-specific effect, !. Columns IV to VI show the same for specification 
II of Table IV, which includes vintage year fixed effects. The Bayes factor represents the ratio of 
marginal likelihoods, indicating the weight of evidence of each model relative to the full model 
specification in column IV, where a Bayes Factor of one indicates that the two models have equal support 
in the data. For each model the number of distributions in the error term (K) is chosen to find the best 
model fit by marginal log-likelihood. Posterior standard deviations (Bayesian standard errors) are in 
brackets. 

Panel A: VC 
           

 
I 

 
II 

 
III 

 
IV 

 
V 

 
VI 

σα 0.049 
 

0.042 
   

0.055 
 

0.040 
  

 
(0.007) 

 
(0.004) 

   
(0.008) 

 
(0.004) 

  
            ση 0.258 

   
0.313 

 
0.193 

   
0.268 

 
(0.031) 

   
(0.023) 

 
(0.037) 

   
(0.025) 

            σε 2.449 
 

2.604 
 

2.431 
 

2.326 
 

2.465 
 

2.316 

 
(0.123) 

 
(0.107) 

 
(0.114) 

 
(0.121) 

 
(0.115) 

 
(0.123) 

                        
σy2 6.933 

 
6.971 

 
6.906 

 
6.120 

 
6.255 

 
6.106 

 
(0.596) 

 
(0.562) 

 
(0.553) 

 
(0.561) 

 
(0.572) 

 
(0.567) 

                        
Vintage FE N 

 
N 

 
N 

 
Y 

 
Y 

 
Y 

K 3 
 

3 
 

2 
 

3 
 

3 
 

3 
N 842 

 
842 

 
842 

 
842 

 
842 

 
842 

Marginal log-L -1,829.5 
 

-1,755.4 
 

-1,823.6 
 

-1,703.8 
 

-1,669.2 
 

-1,727.4 
Bayes factor 0.000 

 
0.000 

 
0.000 

 
N/A 

 
1.0E+15 

 
0.000 

 

  



Panel B: Buyout 
          

 
I 

 
II 

 
III 

 
IV 

 
V 

 
VI 

σα 0.060 
 

0.043 
   

0.056 
 

0.044 
  

 
(0.008) 

 
(0.005) 

   
(0.008) 

 
(0.005) 

  
            ση 0.142 

   
0.277 

 
0.203 

   
0.279 

 
(0.039) 

   
(0.034) 

 
(0.043) 

   
(0.020) 

            σε 1.359 
 

1.542 
 

1.261 
 

1.225 
 

1.469 
 

1.196 

 
(0.058) 

 
(0.051) 

 
(0.065) 

 
(0.073) 

 
(0.054) 

 
(0.071) 

                        
σy2 2.428 

 
2.567 

 
2.373 

 
2.253 

 
2.359 

 
2.217 

 
(0.152) 

 
(0.163) 

 
(0.121) 

 
(0.168) 

 
(0.163) 

 
(0.167) 

                        
Vintage FE N 

 
N 

 
N 

 
Y 

 
Y 

 
Y 

K 2 
 

2 
 

1 
 

2 
 

2 
 

2 
N 562 

 
562 

 
562 

 
562 

 
562 

 
562 

Marginal log-L -1,054.6 
 

-1,039.7 
 

-1,054.6 
 

-1,031.6 
 

-1,019.7 
 

-1,035.0 
Bayes factor 0.000 

 
0.000 

 
0.000 

 
N/A 

 
1.4E+05 

 
0.033 

 

Panel C: Other 
           

 
I 

 
II 

 
III 

 
IV 

 
V 

 
VI 

σα 0.049 
 

0.039 
   

0.049 
 

0.037 
  

 
(0.006) 

 
(0.004) 

   
(0.006) 

 
(0.004) 

  
            ση 0.202 

   
0.245 

 
0.135 

   
0.199 

 
(0.028) 

   
(0.022) 

 
(0.028) 

   
(0.017) 

            σε 0.807 
 

1.059 
 

0.793 
 

0.865 
 

1.038 
 

0.848 

 
(0.039) 

 
(0.033) 

 
(0.041) 

 
(0.050) 

 
(0.037) 

 
(0.050) 

                        
σy2 1.314 

 
1.272 

 
1.234 

 
1.186 

 
1.217 

 
1.119 

 
(0.084) 

 
(0.075) 

 
(0.079) 

 
(0.090) 

 
(0.081) 

 
(0.087) 

                        
Vintage FE N 

 
N 

 
N 

 
Y 

 
Y 

 
Y 

K 1 
 

2 
 

1 
 

3 
 

3 
 

3 
N 518 

 
518 

 
518 

 
518 

 
518 

 
518 

Marginal log-L -787.8 
 

-777.6 
 

-781.7 
 

-776.9 
 

-771.3 
 

-774.5 
Bayes factor 0.000   0.491   0.008   N/A   256.185   10.677 
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