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1 Introduction

The existence of a systematic trade-off between market risk and expected returns is central

to modern finance. Yet, despite more than two decades of empirical research, there is little

consensus on the basic properties of the relation between the equity premium and conditional

stock market volatility. Studies such as Campbell (1987), Breen, Glosten, and Jagannathan

(1989), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), and Brandt and Kang (2004)

find a negative trade-off, while conversely French, Schwert, and Stambaugh (1987), Bollerslev,

Engle, and Wooldridge (1988), Harvey (1989), Harrison and Zhang (1999), Ghysels, Santa-Clara,

and Valkanov (2005), Guo and Whitelaw (2006), and Ludvigson and Ng (2007) find a positive

trade-off. While these studies use different methodologies and sample periods, it remains a puzzle

why empirical results vary so much.

Theoretical asset pricing models do not generally imply a linear or even monotonic, risk-return

relation. For example, in the context of a simple endowment economy, Backus and Gregory (1993)

show that the shape of the relation between the risk premium and the conditional variance of stock

market returns is largely unrestricted with increasing, decreasing, flat, or non-monotonic patterns

all possible. Similar conclusions are drawn by studies such as Abel (1988), Gennotte and Marsh

(1993) and Veronesi (2000).1 It follows that the conventional practice of measuring the risk-return

trade-off by means of a single slope coefficient in a linear model offers too narrow a perspective

and can lead to biased results since it limits the analysis to monotonic or flat relations. Typically,

the risk-return trade-off cannot be summarized in this manner without making strong auxiliary

modeling assumptions whose validity need to be separately tested. Instead it is necessary to

consider the shape of the entire risk-return relation at different levels of risk.

This paper introduces a novel and flexible regression approach that does not impose strong

modeling assumptions such as linearity to analyze the shape of the risk-return relation. Our

approach uses regression trees to carve out the state space through a sequence of piece-wise

constant models that approximate the unknown shape of the risk-return relation. By using

additive expansions of simple regression trees−a process known as boosting−we obtain smooth

and stable estimates that let us map the shape of the risk return relation as well as empirically

test if it is monotonic.

1Merton (1980), Eq. (2.1), also considers nonlinearities but assumes a monotonic mean-volatility relation.
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We adopt the boosted regression tree approach to empirically analyze the risk-return relation

for US monthly stock returns over the period 1927-2008 and find strong empirical evidence of a

non-monotonic risk-return relation. At low and medium levels of conditional volatility, there is

a strongly positive relation between the conditional mean and volatility of stock market returns.

Conversely, at high levels of volatility, the relation appears to be flat or inverted, i.e., higher levels

of conditional volatility are associated with lower expected returns. Formal statistical tests that

account for sampling error soundly reject a monotonically increasing mean-volatility relation.

An obvious reason for the difference between these new findings and existing ones is that

previous studies have generally assumed a linear model for the mean-volatility (or mean-variance)

relation. Such an assumption may lead to biased estimates. We provide empirical tests which

show that linear models for the risk-return relation are clearly misspecified. In fact, a simple

piece-wise linear regression model shows that there is a strongly positive risk-return trade-off at

low-to-medium levels of conditional volatility, but a significantly negative trade-off at high levels

of conditional volatility.

A second reason why our results differ from previous estimates comes from differences in

the underlying mean and volatility estimates. Empirical evidence in Glosten, Jagannathan, and

Runkle (1993) and Harvey (2001) suggests that inference on the risk-return relationship can

be very sensitive to how the expected return and volatility models are specified.2 Model and

estimation errors can bias results if the estimated models for expected returns or conditional

volatility are misspecified as a result of using overly restrictive models or including too few

predictor variables (Ludvigson and Ng (2007)). Our model specification tests show that linear

models used to compute expected returns and conditional volatility are misspecified even when

a large set of conditioning variables is used. The same holds for the variance estimates based on

sophisticated GARCH or MIDAS models. Due to the difficulty of maintaining a flexible functional

form for the conditional mean and volatility models while also considering a large conditioning

information set, it has proven difficult to effectively address the resulting bias. However, we find

that the boosted regression tree approach accomplishes this, passes the model specification tests,

and finds evidence of a highly nonlinear effect of many predictor variables on both expected

returns and conditional volatility.

2Lettau and Ludvigson (2009) conclude that “the estimated risk-return relation is likely to be highly dependent on
the particular conditioning variables used in any given empirical study.”
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Dynamic asset pricing models provide economic intuition for our findings of a non-monotonic

risk-return relation. In consumption asset pricing models, the conditional equity premium de-

pends on the correlation between stock returns and the marginal rate of substitution between

current and next period’s consumption. Volatility of stock returns reflect changes in expectations

on the entire infinite future stream of consumption and asset payoffs. In a model with regime

switching in the consumption process Whitelaw (2000) shows that this difference in horizons can

reduce the relation between stock market returns and the marginal rate of substitution. States

with high probability of transitioning to a new regime and hence high levels of uncertainty can

have low expected returns but high conditional volatility, while the traditional positive risk-return

relation emerges in more “normal” and less uncertain states of the world. Combining these effects

leads to a non-monotonic, inverted risk-return relation.

When the dividend and consumption processes can differ, time-varying heteroskedasticity in

the dynamics of these processes can create a further wedge between marginal utility of con-

sumption and asset payoffs and thus between expected returns and volatility. States with high

uncertainty of future consumption growth and high return volatility need not have high expected

returns if the correlation between consumption and dividend growth is simultaneously low. This

happens when the stock market provides a partial hedge against adverse consumption states

because dividends, and hence the price-dividend ratio can be high in such states. In the context

of a simple asset pricing model based on the analysis in Garcia, Meddahi, and Tédongap (2008)

and Bonomo, Garcia, Meddahi, and Tédongap (2011), we show how this can again lead to a

non-monotonic risk-return relation similar to the one observed in the data.

Common to these models is that conditional stock market volatility is not an appropriate mea-

sure of risk. Indeed, the consumption CAPM (Breeden (1979)) suggests the covariance between

returns and consumption growth as the appropriate measure of risk, while the intertemporal

CAPM (Merton (1973)) adds a set of hedge factors tracking time-varying investment opportu-

nities. To address these points, we construct a new “realized covariance” risk measure based on

daily changes in the broad economic activity index developed by Arouba, Diebold, and Scotti

(2009) and daily stock market returns. Consistent with the above asset pricing models we find

evidence of a strongly positive and monotonic relation between conditional covariance risk and

expected returns. From an economic perspective, variations in the conditional covariance lead

to far greater changes in expected returns than those associated with variations in conditional
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volatility.

Our analysis generalizes and provides a synthesis of many existing approaches from the lit-

erature on the risk-return trade-off. Ludvigson and Ng (2007) argue that most studies consider

too few conditioning variables and provide a factor-based approach that parsimoniously summa-

rizes information from a large cross-section of variables. Once the conditioning information set

is expanded in this way, they find evidence of a positive risk-return trade-off. Like these authors,

we consider a large set of conditioning variables to compute the conditional equity premium

and market volatility. Linear mean-variance models such as Bollerslev, Engle, and Wooldridge

(1988), and Ghysels, Santa-Clara, and Valkanov (2005) arise as special cases of our setup when

the variance estimates are based on past (squared) returns. Guo and Whitelaw (2006) argue

that findings of a negative or insignificant mean-variance relation is due to the omission of an

intertemporal hedging component leading to a downward bias in the variance coefficient. We

consider a model that includes both variance and covariance terms and find that our results are

robust to the inclusion of both measures of risk. Following papers such as Harrison and Zhang

(1999), we do not impose monotonicity on the risk-return relation, but allow its shape to be freely

estimated. Our use of boosted regression trees bears similarities to forecast combinations and

thus incorporates advantages of this approach for return forecasting purposes, a point recently

emphasized by Rapach, Strauss, and Zhou (2010).

Our results are found to be robust in several dimensions. Overfitting is a potential concern

whenever flexible methods such as boosted regression trees are adopted. To address this issue,

we conduct an out-of-sample forecasting exercise that compares the precision of the boosted

regression tree forecasts with forecasts from linear return models and GARCH and MIDAS

volatility forecasting models. For both expected returns and volatility, we find that the boosted

regression tree forecasts are more precise than those produced by conventional forecasting models,

thus suggesting that overfitting is not a concern. When we account for measurement errors in

the conditional volatility or covariance proxies through an instrumental variables procedure, we

also find that these do not significantly impact our empirical findings. Finally, we show that our

results are robust to how the boosted regression trees are implemented.

In summary, the main contributions of our paper are as follows. First, we present a new,

flexible modeling approach that reduces the risk of biases in estimates of expected returns and

conditional volatility. Second, we use this approach to analyze empirically the relation between
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the expected return and conditional volatility without imposing restrictions on the shape of

this relation. Using U.S. stock returns, we present evidence of a non-monotonic mean-volatility

relation with expected returns first rising, then declining as the conditional volatility further

increases. Third, we use asset pricing models to gain insights into the type of economic mechanism

that can induce the non-monotonic risk-return relation observed in the data. Fourth, we propose

a new conditional covariance risk measure that builds on the covariation between daily stock

returns and daily economic activity. Finally, we show empirically that when this broad conditional

covariance is used to measure risk, a strongly increasing and monotonic risk-return relation

emerges.

The remainder of the paper is organized as follows. Section 2 introduces our approach to

modeling the risk-return relation. Section 3 describes the data, analyzes the risk-return relation

empirically, compares our approach to existing methods and discusses reasons why our empirical

findings differ from previously reported ones. Section 4 provides economic intuition for the

non-monotonic risk-return relation in the context of dynamic asset pricing models. Section 5

introduces the new covariance measure of risk, while Section 6 conducts a series of robustness

checks and extensions, and Section 7 concludes.

2 Empirical Methodology

Dynamic asset pricing models do not generally restrict the relation between conditional market

volatility and expected returns to be linear. To quote from Gennotte and Marsh (1993, page

1039), “.. in a general equilibrium framework, the market risk premium is a complicated function

of the cash flow uncertainty, implying that the simple regression and time series fits of the relation

between equity risk premiums and asset price volatility are likely to be misspecified.” To avoid

biases that follow from restricting the shape of the risk-return trade-off, it is therefore important

to adopt an empirical modeling approach that is flexible, yet as emphasized by Ludvigson and

Ng (2007) can simultaneously deal with large sets of predictor variables.

This section describes a new modeling approach that avoids imposing shape restrictions on the

risk-return relation or on the models used to generate expected returns and conditional volatility

estimates, while allowing for large-dimensional state variables. The approach uses regression

trees. To get intuition for how these work and establish the appropriateness of their use in our
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analysis, consider the situation with a single dependent variable yt+1 (e.g., stock returns) and

two state variables, x1t and x2t (e.g., the earnings-price ratio and the payout ratio), so that

interest lies in modeling expected returns using ex-ante regressors. The functional form of the

model mapping x1t and x2t into yt+1 is unlikely to be known, so we simply partition the sample

support of x1t and x2t into a set of regions or “states” and assume that the dependent variable

is constant within each partition.

Specifically, we first split the sample support into two states and compute the mean of y in

each state. We choose the state variable (x1 or x2) and the splitting point to achieve the best

fit. Next, one or both of these states is split into two additional states. Boosted regression trees

are additive expansions of regression trees, where each additional tree is fitted on the residuals

of the previous tree until some stopping criterion is reached. The number of trees used in the

summation is known as the number of boosting iterations.

An economic illustration of the approach is provided in Figure 1, which shows boosted re-

gression trees that use the (lagged) log payout ratio (i.e., the dividend-earnings ratio) and the

log earnings-price ratio to predict excess returns on the S&P500 index. Each iteration fits a tree

with two terminal nodes, so every new tree stub generates two regions. The graph on the left

uses only three boosting iterations. The resulting model ends up with one split along the payout

ratio axis and two splits along the earnings-price ratio axis. Within each state the predicted value

of stock returns is constant. With only three boosting iterations the model is quite coarse and

shows that the expected return is at its lowest (highest) when the payout ratio is high (low) and

the earnings-price ratio is low (high). The fit improves as more boosting iterations are added.

As an illustration, the figure on the right is based on 5,000 boosting iterations. Now the plot is

much smoother, but clear similarities between the two graphs remain.

We next provide a more formal description of the methodology and explain how we implement

it in our analysis. Our description draws on Hastie, Tibshirani, and Friedman (2009) who provide

a more in-depth coverage of the approach.

2.1 Regression Trees

Consider a time-series with T observations on a single dependent variable, yt+1, and P predictor

(state) variables, xt = (xt1, xt2, ..., xtp), for t = 1, 2, ..., T . As illustrated in Figure 1, implementing
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a regression tree requires deciding, first, which predictor variables to use to split the sample space

and, second, which split points to use. A given split point may lead to J disjoint sub-regions or

states, S1, S2, ..., SJ , and the dependent variable is modeled as a constant, cj , within each state,

Sj . For example, in Figure 1 there are J = 2 nodes at each split point. For the resulting states

cj corresponds to the value of the flat spots on the vertical (expected return) axis. The value

fitted by a regression tree, T (xt,ΘJ), with J nodes and parameters ΘJ = {Sj , cj}Jj=1 can thus

be written

T (xt,ΘJ) =
J�

j=1

cjI{xt ∈ Sj}, (1)

where the indicator variable I{xt ∈ Sj} equals one if xt ∈ Sj and is zero otherwise.

Estimates of Sj and cj can be obtained as follows. Under the conventional objective of

minimizing the sum of squared forecast errors, the estimated constant, �cj , is the average of yt+1

in state Sj :

�cj =
1

�T
t=1 I{xt ∈ Sj}

T�

t=1

yt+1I{xt ∈ Sj}. (2)

Optimal splitting points are more difficult to determine, particularly in cases where the number

of state variables, P , is large, but sequential algorithms have been developed for this purpose.

Regression trees are very flexible and can capture local features of the data that linear models

overlook. Moreover, they can handle cases with large-dimensional data. This becomes important

when modeling stock returns because the identity of the best predictor variables is unknown and

so must be determined empirically. On the other hand, the approach is sequential and successive

splits are performed on fewer and fewer observations, increasing the risk of overfitting. There is

also no guarantee that the sequential splitting algorithm leads to the globally optimal solution.

To deal with these problems, we next consider a method known as boosting.

2.2 Boosting

Boosting is based on the idea that combining a series of simple prediction models can lead to

more accurate forecasts than those available from any individual model. Boosting algorithms

iteratively re-weight data used in the initial fit by adding new trees in a way that increases the

weight on observations modeled poorly by the existing collection of trees. By summing over a

sequence of trees, boosting performs a type of model averaging that increases the stability of the
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forecasts.

A boosted regression tree (BRT) is simply the sum of individual regression trees:

fB(xt) =
B�

b=1

Tb(xt; ΘJ,b), (3)

where Tb(xt,ΘJ,b) is the regression tree of the form (1) used in the b-th boosting iteration and B

is the total number of boosting iterations. Given the previous model, fB−1(xt), the subsequent

boosting iteration seeks to find parameters ΘJ,B = {Sj,B , cj,B}Jj=1 for the next tree to solve a

problem of the form

Θ̂J,B = arg min
ΘJ,B

T−1�

t=0

[et+1,B−1 − TB(xt,ΘJ,B)]
2
, (4)

where et+1,B−1 = yt+1 − fB−1(xt) is the forecast error remaining after B − 1 boosting itera-

tions. The solution is the regression tree that most reduces the average of the squared residuals
�T

t=1 e
2
t+1,B−1 and ĉj,B is the mean of the residuals in the jth state. Figure 1 shows that as the

number of boosting iterations increases, the area covered by individual states shrinks and the fit

becomes better.

Boosting makes it more attractive to employ small trees at each boosting iteration, thus

reducing the risk that the regression trees will overfit. Our estimations therefore use J = 2 nodes

and follow the stochastic gradient boosting approach of Friedman (2001) and Friedman (2002).

The baseline implementation employs B =10,000 boosting iterations. Robustness analysis reveals

that the results are not sensitive to this choice.

The literature on ensemble learning (e.g. Dietterich (2000)) suggests various ways in which

the learning rate of the BRTs can be controlled, and we adopt three common refinements to the

basic regression tree methodology, namely (i) shrinkage, (ii) subsampling, and (iii) minimization

of absolute errors. These techniques are all known to decrease the rate at which the average

forecast errors are minimized on the training data and hence reduce the risk of overfitting (e.g.,

Hastie, Tibshirani, and Friedman (2009)).

Specifically, following Friedman (2001) we use a small shrinkage parameter, i.e., λ = 0.001,
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that reduces the amount by which each boosting iteration contributes to the overall fit:

fB(xt) = fB−1(xt) + λ

J�

j=1

cj,BI{xt ∈ Sj,B}. (5)

This procedure reduces the ability of the algorithm to overfit individual outlier observations such

as October 1987.

Each tree is fitted on a randomly drawn subset of the training data, whose length is set at

one-half of the full sample, the default value most commonly used. Again this reduces the risk

of overfitting. Importantly, since individual trees are fitted on different subsets of the data, the

starting point of the algorithm, or more specifically the particular sequence of splits selected by

the regression trees, has very little effect on our results.

Finally, the empirical analysis minimizes mean absolute errors. We do this in light of a large

literature suggesting that squared-error loss places too much weight on observations with large

residuals. This is a particular problem for fat-tailed distributions such as those observed for

stock returns and volatility. By minimizing absolute errors, our regression model is more robust

to outliers.

To see how the resulting BRTs can flexibly approximate a range of true relations by means

of a series of piece-wise constant functions, Figure 2 plots the fitted values for three different

shapes−linear, inverse-V, and linear-quadratic−using one, five and 10,000 boosting iterations.

With only a single boosting iteration and two nodes, the BRTs simply classify the data into high

and low values. For the inverse-V or linear-quadratic shapes, the BRTs capture the nonlinear

relation with only five iterations and with 10,000 iterations the fit gets very good, with only peak

values missing out. In contrast, the linear model is clearly misspecified suggesting that the BRT

estimates are more robust and can capture a wide range of patterns.

2.3 Measuring the Effect of Individual Variables

In a linear model the importance of a particular state variable can be measured through the

magnitude and statistical significance of its slope coefficient. This measure is not applicable to

regression trees since these do not impose linearity. As an alternative measure of influence, we

instead consider the reduction in the forecast error every time a particular variable, xp, is used to

split the tree. Summing the reductions in forecast errors (or improvements in fit) across the nodes
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in the tree and across boosting iterations gives a measure of each variable’s influence (Breiman

(1984)). The more frequently a variable is used for splitting and the bigger its effect on reducing

the forecast errors, the greater its influence. If a variable never gets chosen to conduct the splits,

its influence will be zero. Finally, the resulting measure of influence is divided by the summed

influence across all variables to get a measure of relative influence. This sums to one and can be

compared across predictor variables.

Similarly, we can compute the marginal effect of one state variable, Xp, on the dependent

variable by fixing the value of the state variable and averaging out the effect of the remaining

variables. Repeating this process for different values of Xp yields a partial dependence plot that

shows the effect individual state variables have on the dependent variable.

3 Empirical Risk-Return Estimates

This section presents estimates of the risk-return relation, contrasting results from conventional

linear models with those obtained using the boosted regression tree approach described in Section

2. We first present the data used in our empirical analysis and then report empirical results.

3.1 Data

Our empirical analysis of the risk-return trade-off relies on proxies for the conditional expectation

of stock returns and the conditional volatility. Following the extensive empirical literature on

time variations in both expected stock market returns and volatility (e.g., Lettau and Ludvigson

(2009)), these are constructed using a broad range of state variables.

Specifically, our empirical analysis uses a data set comprising monthly stock returns along

with a set of predictor variables previously analyzed in Welch and Goyal (2008) extended to

cover the sample 1927-2008.3 Stock market returns are tracked by the S&P 500 index and

include dividends. A short T-bill rate is subtracted to obtain excess returns. For brevity we refer

to these simply as the returns.

The predictor variables fall into three broad categories. First, there are valuation ratios

capturing some measure of ‘fundamental’ value to market value such as the log dividend-price

3A few variables were excluded from the analysis since they were not available up to 2008. We also excluded the
CAY variable since this is only available quarterly since 1952.
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ratio and the log earnings-price ratio. Second, there are bond yield measures capturing the level

or slope of the term structure or measures of default risk such as the three-month T-bill rate, the

de-trended T-bill rate, i.e., the T-bill rate minus a three-month moving average, the yield on long

term government bonds, the term spread measured by the difference between the yield on long-

term government bonds and the three-month T-bill rate, and the default yield spread measured

by the yield spread between BAA and AAA rated corporate bonds. Third, there are estimates

of equity risk and returns such as the lagged excess return, long term (bond) returns, and stock

variance, i.e., a volatility estimate based on daily squared returns. Finally, we also consider the

dividend payout ratio measured by the log of the dividend-earnings ratio and the inflation rate

measured by the rate of change in the consumer price index. Additional details on data sources

and the construction of these variables are provided by Welch and Goyal (2008). All predictor

variables are appropriately lagged so they are known at time t for purposes of forecasting returns

in period t+ 1.

Following the analysis in Ludvigson and Ng (2007), we also consider a much larger information

set. Specifically, suppose that a large set of state variables zit, i = 1, ..., N are generated by a

factor model of the form zit = λ
�
ift + eit,where ft is a vector of common factors, λi is a set of

factor loadings, and eit is an idiosyncratic error. Using common factors as predictor variables

rather than the N individual regressors achieves a substantial reduction in the dimension of the

information set. We follow Ludvigson and Ng (2007) and extract factors through the principal

components method. Their data contain N = 131 economic time series for the period 1960-2007.

By considering this large set of predictor variables, we address a potentially important source of

model misspecification caused by omitted variables.

Market variance is unobserved, so we follow a large recent literature in proxying it through

the realized variance. Specifically, let ri,t be the daily return on day i during month t and let

Nt be the number of trading days during that month. Following, e.g., French, Schwert, and

Stambaugh (1987) and Schwert (1989) we construct the realized variance measure

σ̂
2
t =

Nt�

i=1

r
2
i,t. (6)

This estimator is only free of measurement errors as the sampling frequency approaches infinity,

so σ̂
2
t is best thought of as a variance proxy.
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3.2 Estimates of Expected Return and Conditional Volatility

Let rt+1 be the market return during period t + 1, measured in excess of the risk-free rate.

Estimates of the expected excess return, µt+1|t = Et[rt+1], and the conditional volatility, σt+1|t =

V art(rt+1)1/2, are computed conditional on information known to investors at time t. Both are

unobserved and so empirical analysis typically relies on model-based proxies of the form

µ̂t+1|t = fµ(xt|θ̂µ),

σ̂t+1|t = fσ(xt|θ̂σ), (7)

Here xt is a set of publicly available predictor variables and θ̂µ and θ̂σ are estimates of the

parameters of the expected return and volatility models, respectively. We provide further details

of these estimates below, but first turn to the risk-return model.

3.3 Linear Estimates of the Risk-Return Relation

Following Ludvigson and Ng (2007) we first consider a reduced-form relation that models the

conditional equity premium as a linear function of the conditional volatility:

µ̂t+1|t = α+ β1σ̂t+1|t + β2σ̂t|t−1 + β3µ̂t|t−1 + εt+1, (8)

where ‘hats’ indicate estimated values from the boosted regression trees. In a generalization of

the conventional volatility-in-mean model, lags are included to account for the complex lead-lag

relation between the conditional mean and volatility, see, e.g., Whitelaw (1994) and Brandt and

Kang (2004).

Empirical estimates of this model are shown in Panel A1 of Table 1. For the full sample, 1927-

2008, we find evidence of a positive and significant linear relation between the contemporaneous

volatility and expected returns with a t-statistic of 2.7. Conversely, the effect of lagged volatility

is strongly negative, while the effect of lagged expected returns is strongly positive. Although

these results carry over to the first subsample, 1927-67, they are not stable. In the second

subsample, 1968-2008, the relation between the conditional mean and both the current and lagged

conditional volatility is insignificant and much weaker. Similar findings hold for the comparable

sample, 1960-2007, used to obtain factor-based estimates of the mean and volatility.
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While Ludvigson and Ng (2007) use the conditional volatility as their risk measure, it is more

common to use the conditional variance, so we also consider the following linear mean-variance

specification

µ̂t+1|t = α+ β1σ̂
2
t+1|t + β2σ̂

2
t|t−1 + β3µ̂t|t−1 + εt+1. (9)

For this specification, Panel B1 shows that the estimated slope coefficient on the conditional

variance term is positive but not statistically significant in any of the samples or when common

factor estimates are used to obtain the underlying moments.4

To see if the linear mean-volatility or mean-variance models are correctly specified, we under-

take a set of non-parametric specification tests. These results, reported in Panel A in Table 2,

show that linearity of the mean-volatility or mean-variance relation is strongly rejected for both

the baseline variance specification that uses the full sample from 1927-2008 and for the factor

model based on the shorter sample 1960-2007. Linearity of the mean-variance relation continues

to be rejected in the full sample, though not always in the shorter sample, when the variance

estimates are based on GARCH (Bollerslev, Engle, and Wooldridge (1988)) or MIDAS (Ghysels,

Santa-Clara, and Valkanov (2005)) models. Both of these approaches model current conditional

variance as a function of past return shocks measured either at the monthly or daily horizon.

As a simple first measure of the nature of the misspecification of the linear risk-return relation,

we adopt the threshold regression approach of Hansen (2000) and estimate a piece-wise linear

model relating the expected return to the conditional variance:

µ̂t+1|t =






−0.003 + 25.538 σ̂
2
t+1|t for σ̂

2
t+1|t ≤ (0.0253)2

(−1.49) (6.23)

0.009 − 0.542 σ̂
2
t+1|t for σ̂

2
t+1|t > (0.0253)2

(20.73) (−5.22)

(10)

At low levels of the conditional variance (corresponding to annualized volatility levels below 9%),

a strongly positive and significant mean-variance relation emerges. In contrast, for higher val-

ues of the conditional variance, the relationship is negative and strongly significant. A linearity

4These are OLS estimates and ignore measurement errors in the proxies for the conditional variance. Section 6.3
shows how to deal with this problem using instrumental variables estimation and demonstrates that this has only a
minor effect on the results.
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test for equal slope of the two segments is rejected with a p-value well below 0.01%.5 This

demonstrates the limitations of linear and monotonic models for the relation between the condi-

tional mean and variance and indicates that the risk-return relation is inverted at high levels of

volatility.

An alternative to using model-based estimates of the conditional volatility is to adopt a

market-based estimate of conditional volatility, namely the Chicago Board Options Exchange

Index, commonly known as the VIX. The VIX is effectively a market-based estimate of the

volatility of the S&P 500 index over the next 30 days. Data on the VIX are available over the

period 1986-2008. Table 1 shows results for the linear risk specification based on the VIX measure

of conditional volatility or its square. In both cases the coefficient on current VIX is positive but

statistically insignificant.

3.4 Flexible Risk-Return Model

Given the evidence that the linear model is clearly misspecified, we next turn to the more flexible

risk-return model based on the boosted regression trees which do not impose particular functional

form assumptions. Specifically, consider the following generalization of Eqs. (8-9):

µ̂t+1|t = f(σ̂t+1|t, σ̂t|t−1, µ̂t|t−1), (11)

where now f is estimated by means of the BRTs. As noticed in Section 2.3, we can no longer

measure the importance of the explanatory variables through their slope coefficients, so instead

Panels A2 and B2 in Table 1 present estimates of the relative influence of the three variables in

this model using either σ̂t+1|t or σ̂
2
t+1|t as the measure of risk.6 The relative weight on current

conditional volatility is 8% for the full sample which is statistically significant at the 5% level.7

5For simplicity we have omitted the lagged expected return and conditional variance from Eq. (10), but we continue
to reject the linear specification when these terms are included. Nearly identical results were obtained when we used
the conditional volatility in place of the conditional variance in Eq. (10).

6For the flexible risk-return model it should make no difference whether we use σ̂t+1|t or σ̂2
t+1|t as the measure of

risk since the squaring can be undone by the BRT. This is consistent with what we find in Table 1 with only very
minor differences (due to random sampling) between the results in Panels A2 and B2.

7To assess the statistical significance of the relative influence of individual variables, we undertake the following
analysis. We fix the ordering of the dependent variable and all explanatory variables except for one variable, whose
values are redrawn randomly in time. We then calculate the relative influence measure for the data with the reshuffled
variable. Because any relation between the randomized variable and expected returns is broken, we would expect to
find a lower value of its relative influence, any results to the contrary reflecting random sampling variation. Repeating
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This weight is similar to that of the lagged volatility (9%). The weight on the lagged expected

return (83%) is higher, which is unsurprising since the expected return is quite persistent and so

its lagged value is likely to be important in this model. This finding is also consistent with the

larger coefficient and t-statistic on lagged expected returns in the linear model. Interestingly, in

the first subsample, 1927-67, the current conditional volatility obtains a large (and significant)

weight of 21%, but the weight declines to 10% in the second subsample, 1968-2008, where it fails

to be significant.

Panel A in Table 2 reports model specification tests for the BRTs fitted on the risk-return

data. In contrast with the linear model, we find no evidence of misspecification for the BRT

model, indicating that this approach captures the shape of the risk-return relation much better

and suggesting that the true risk-return relation is nonlinear.

Figure 3 plots the marginal effect of the conditional volatility on expected returns, obtained by

integrating across the lagged values of volatility and expected returns. The figure confirms that

the trade-off between concurrent expected returns and conditional volatility is highly nonlinear

in all three samples. At low-to-medium levels of volatility, a strongly positive relation emerges

where higher conditional volatility is associated with higher expected returns. As volatility rises

further, the relation flattens out and, at high levels of conditional volatility, it appears to be

inverted so higher conditional volatility is associated with declining expected returns. Section

6.2 shows how a Bayesian modification to the boosted regression trees can be used to provide

standard errors on these plots.

Our analysis assumes a constant risk-return relation. However, we can at least in part address

this issue by applying our methodology to subsamples of the data. As shown in the middle and

right plots in Figure 3, the inverted risk-return trade-off at medium-high levels of volatility is a

robust finding in the sense that it appears not to be confined to a particular historical period.8

A possible concern with these findings is that the flat and decreasing parts of the risk-return

plot could be driven by relatively few observations. However, this does not seem to be the

case. In the full-sample plot in Figure 3, 37% of the observations lie to the left of the steeply

this experiment a large number of times and recording how often the randomized relative influence measure exceeds
the estimated empirical value from the actual data, we obtain a p-value for the significance of the individual variables.

8The non-monotonic risk-return relation is related to the finding by Brandt and Wang (2007) that, while the
risk-return relation is mostly positive, it varies considerably over time and is negative for periods around the oil price
shocks of the early 1970s, the monetarist experiment, 1979-81, and again around the recession of 2000-2001. Those
are all periods associated with greater than normal volatility and so these findings are closely related to our results.
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increasing part, while 63% lie on the flat and declining parts. For the first subsample, 75% of

the observations lie to the left of the peak of the graph while for the second subsample, 65% of

the observations lie to the left of the peak. These numbers do not suggest that the shape of the

graphs are driven by a few outliers.

3.5 Comparison with Existing Approaches

Differences between the findings reported here versus earlier estimates can be attributed either

to differences in how the risk-return relation is modeled or to the use of different estimates of the

conditional mean and variance of market returns. We already addressed the first point and now

turn to the second point.

Differences in estimates of market variance and expected returns turn out to be very important

for the risk-return relation. This finding is consistent with Glosten, Jagannathan, and Runkle

(1993), Harvey (2001) and Lettau and Ludvigson (2009) who conclude that empirical analysis

of the risk-return is highly sensitive to changes in the mean-volatility estimates. Indeed, in

unreported results we find that the coefficient in a regression of the conditional mean on the

conditional volatility is highly sensitive to whether the first-stage conditional mean and volatility

estimates are based on a linear model−in which case the coefficient is significant and negative−or

on the boosted regression tree, which leads to a positive and significant coefficient.

It is therefore important to avoid using misspecified models when generating estimates of the

expected return and conditional volatility. To see the relevance of this point, Panel B in Table 2

reports a set of diagnostic tests for whether the first-stage estimates of the conditional mean and

variance are misspecified. Linear models for the expected return and conditional variance (or

volatility) are clearly misspecified. In contrast, the BRTs do not appear to be misspecified for

the expected return and conditional variance. Furthermore, both the GARCH variance model

adopted by Bollerslev, Engle, and Wooldridge (1988) and the MIDAS model of Ghysels, Santa-

Clara, and Valkanov (2005) appear to be misspecified.

To understand why linear models for the volatility and expected returns are misspecified,

we study the BRT estimates of the conditional mean and volatility in more detail. These are

unconstrained and so are able to reveal the nature of any deviations from linearity. The top row

in Figure 4 presents partial dependence plots for the three most important predictor variables in
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the BRT model for expected returns, namely inflation, the earnings-price ratio and the relative

return. The relation between expected stock returns and these predictor variables is highly

nonlinear. At negative levels of inflation the relation between the rate of inflation and expected

returns is either flat or rising. Conversely, at positive levels of inflation, higher consumer prices

are associated with lower mean returns. Although the relation between expected stock returns

and the log earnings-price ratio is always positive, it is strongest at low or high levels of this

ratio, and gets weaker at medium levels.

Turning to the volatility plots in the middle row, the predicted volatility quadruples from

roughly 2% to 8% per month as the lagged realized volatility increases over its historical support.

The relation between current and past volatility is basically linear for small or medium values

of past volatility but very high values of past volatility do not translate into corresponding high

values of expected future volatility, as evidenced by the flatness of the relation at high levels

of volatility. A highly nonlinear pattern is also found in the relation between the conditional

volatility and the default spread or past returns.

This evidence indicates that conventional linear risk-return models may get rejected not only

because they are intrinsically misspecified but also because they rely on misspecified proxies for

the conditional mean and volatility. Hence, it is important to use a flexible modeling approach

in both stages of the analysis.

3.6 Tests of Monotonicity

The results reported so far suggest that expected market returns rise when the conditional volatil-

ity goes from low to medium levels. The opposite finding holds for periods with medium-to-high

levels of conditional volatility, where rising volatility is associated with constant or declining

expected returns. While the plots in Figure 3 suggest marked non-monotonicities in the mean-

volatility relation, they do not demonstrate that this relation is non-monotonic in a statistically

significant way.

To formally test if the relation between the conditional volatility and expected returns is

monotonic in a statistical sense, we use the approach in Patton and Timmermann (2010). We

sort pairs of monthly observations into g = 1, .., G groups, {µ̂g
t+1|t, σ̂

g
t+1|t} and then rank them

by the conditional volatility estimate. A monotonic mean-volatility relation implies that, as we
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move from groups with low conditional volatility to groups with high conditional volatility, mean

returns should rise.9

We seek to test whether the conditional expected return increases when ranked by the asso-

ciated value of σ̂g
t+1|t :

H0 : E
�
µ̂
g
t+1|t|σ̂

g
t+1|t

�
≥ E

�
µ̂
g−1
t+1|t|σ̂

g−1
t+1|t

�
, for g = 2, .., G. (12)

Because σ̂
g
t+1|t > σ̂

g−1
t+1|t, this hypothesis says that the expected return associated with observa-

tions where the conditional volatility is high exceeds the expected return associated with obser-

vations with lower conditional volatility. Defining ∆g ≡ E

�
µ̂
g
t+1|t|σ̂

g
t+1|t

�
−E

�
µ̂
g−1
t+1|t|σ̂

g−1
t+1|t

�
, for

g = 2, ..., G, and letting ∆=(∆2,∆3, ....,∆G)�, the null hypothesis can be rewritten as10

H0 : ∆ ≥ 0. (13)

To test this hypothesis, we use the test statistic of Wolak (1989). The null that the conditional

mean increases monotonically in the level of conditional volatility is rejected if there is sufficient

evidence against it. Conversely, a failure to reject the null implies that the data is consistent with

a monotonically increasing relation between the conditional mean and conditional volatility. The

test statistic has a distribution that, under the null, is a weighted sum of chi-squared variables

whose critical values can be computed via Monte Carlo simulation.

For robustness, we perform the test on different numbers of groups, G, chosen so that there

are 40, 50 and 65 observations per group. Furthermore, because it could be of interest to study

the results across different forecast horizons, we compound the monthly returns and compute

the associated estimates of the h-month conditional mean and conditional volatility and conduct

tests for horizons of h = 1, 2, 3 months.11

Test results are reported in Panel A of Table 3. At the one-month horizon, we get p-values

below 5% irrespective of the number of groups, G. Similar results are obtained for the bimonthly

9Since we are interested only in the relation between the concurrent conditional mean and volatility, we integrate
out the effects of the lagged variables in Eq. (11). Hence our analysis is based on the relation between the marginalized
conditional mean and the marginalized conditional volatility.

10Since rankings by σ̂t+1|t are identical to rankings by σ̂2
t+1|t, the tests for monotonicity in the relation between

expected returns and conditional volatility also apply to the conditional variance measure of risk.
11Going beyond the one-quarter horizon entails a significant decline in sample size and a resulting loss in power.
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and quarterly horizons. Panel B shows similar findings for the VIX measure of volatility. These

results demonstrate that a monotonically increasing relation between the conditional mean and

the conditional volatility is strongly rejected, providing evidence of a nonlinear mean-volatility

or mean-variance relation.

4 Why is there a Non-monotonic Risk-Return Relation?

Simple intuition suggests a positive trade-off between stock market volatility and expected re-

turns, so our empirical finding of a non-monotonic relation may at first seem puzzling. In fact,

this section shows that many dynamic asset pricing models can generate a non-monotonic or

even negative relation between expected stock returns and market volatility.

In many dynamic asset pricing models, expected returns depend not only on the conditional

variance of next-period returns but also on how returns are correlated with future shocks to

investment opportunities so that the equity premium contains an intertemporal hedging compo-

nent. For example, in a log-linearized asset pricing model with Epstein-Zin preferences, Campbell

(1993) shows that the expected market excess return takes the form:

Et[rt+1] = (γ − 0.5)σ2
t+1|t +

�
γ − 1− θκ

ψ

�
Covt(rt+1, [Et+1 − Et]

∞�

j=1

ρjrt+1+j , ). (14)

Here γ is the coefficient or relative risk aversion, ψ is the elasticity of intertemporal sub-

stitution, θ = (1 − γ)/(1− ψ
−1), ρ is a linearization constant, and κ measures the sensitivity

of consumption with respect to changes in the expected market return. The last term in Eq.

(14) measures the covariance between the single period market return, rt+1, and revisions to

expectations of all future discounted market returns. The constant in front of this term can be

positive or negative, with θ/ψ measuring the market price of consumption risk. A non-monotonic

mean-variance relation can arise if the covariance term depends on the level of the variance of the

market return, σ2
t+1|t. Suppose, for example, that during periods with high market volatility the

covariance between stock returns and revisions to long-run market return expectations is higher

than normal. Since agents do not like to be exposed to this uncertainty, they increase their pre-

cautionary savings and lower their consumption. If the market price of investment opportunity

set risk (θκ/ψ) is sufficiently high, this can lead to a non-monotonic shape of the risk-return
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relation.

As a specific example, in a simple asset pricing model with power utility, Whitelaw (2000)

shows that switches between two regimes with large differences in consumption growth can induce

a complex, nonlinear relation between expected returns and conditional market volatility. High

conditional return volatility is induced by high levels of uncertainty about future states caused

by high probabilities of switching to a new regime. Such regime switches can also reduce the

correlation between stock returns and the marginal rate of substitution between current and

next period’s consumption and may lower the equity premium. In states of the world where the

stock market portfolio acts as a hedge against adverse shocks to consumption−e.g., when the

price-dividend ratio is high in economic downturns−the equity risk premium can be low even

when the conditional market volatility is high.12

A non-monotonic risk-return relation can alternatively arise because of the dynamics in the

fundamentals of the economy and learning effects. David and Veronesi (2009) derive a model in

which investors’ learning about the unknown state of the economy leads to a V-shaped relation

between return volatility and valuation measures such as the price-earnings ratio. Uncertainty

and thus return volatility is low in “normal” states of the world since these are highly persistent

and thus are associated with only a small probability of large future shifts in the economy.

Conversely, “bad” and “good” states are much less persistent than the normal states and so are

surrounded by much greater uncertainty about the near future. Asset prices react more strongly

to directional information and so are relatively low in the bad state and high in the good state.

Conversely, volatility is high in both of these outlier states, giving rise to a V-shaped relation

between asset prices and volatility. An inverted V-shaped relation between expected returns and

volatility arises in this model if, as one would expect, expected returns are highest in the bad

state (where marginal utility is high) and lowest in the good state with low marginal utility.

Simulations from the model confirm that this holds as there is a negative relation between the

price-earnings ratio and expected returns.13

We next provide a more detailed example of these effects using a model that matches the

12Similarly, in the simple dynamic exchange economy analyzed by Backus, Gregory, and Zin (1989) and Backus and
Gregory (1993), the sign of the risk-return relation can shift from being positive at low-to-medium levels of volatility
to becoming negative at medium-to-high volatility levels, taking an inverse V-shaped form. This effect is driven by
the volatility properties of the endowment process and the associated expected returns or “risk prices”.

13We are grateful to Alex David for confirming this point.
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non-monotonic risk-return relation observed here.

4.1 Illustration from a Simple Model

As an illustration of how a non-monotonic risk-return relation may arise, we adopt the regime

switching model for consumption and dividends proposed by Garcia, Meddahi, and Tédongap

(2008) and Bonomo, Garcia, Meddahi, and Tédongap (2011). In common with papers such

as Bansal and Yaron (2004), this model allows for state-dependent volatility and distinguishes

between consumption and dividends, the former being the payoff on the market portfolio, while

dividend payoffs are received by equity owners.

Log consumption and dividend growth, ∆c, ∆d, follow a process with four states characterized

by their mean (µc, µd), volatility (σc, σd) and correlation (ρ):

∆ct+1 = µ
�
cζt + (σ�

cζt) �c,t+1

∆dt+1 = µ
�
dζt + (σ�

dζt) �d,t+1, (15)

where the innovations (�c,t+1, �d,t+1) are drawn from a normal distribution with zero mean, unit

variance and correlation ρ
�
ζt. The state vector, ζt, follows a Markov process with transition

probabilities collected in a matrix P . ζt = ei if state i occurs at time t, where ei is a column

vector with zeroes everywhere except in the i
th position, which takes the value one.

A representative investor is assumed to have Epstein-Zin preferences as characterized by the

following continuation value of investor utility, Vt:

Vt =

�
(1− δ)C

1− 1
ψ

t + δ

��
Et

�
V

1−γ
t+1

�� 1
1−γ

�(1− 1
ψ )
� 1

1− 1
ψ

. (16)

Here γ is the coefficient of relative risk aversion, ψ �= 1 measures the elasticity of intertemporal

substitution, and δ is a subjective discount factor. With this in place, Garcia, Meddahi, and

Tédongap (2008) show that the conditional mean and variance of excess returns are given by:

Et[R
e
t+1] =

�
(λ�

2ζt) exp(µ
�
dζt + σ

2�
d ζt/2)(λ1 + e)�P − λ

�
2f

�
ζt, (17)

V art[R
e
t+1] = (θ�2dζt)

�
[(λ1 + e)⊙ (λ1 + e)]� Pζt

�
, (18)
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where {λ1, λ2, θ2d} are vectors of constants that depend on the underlying parameters of the

economy, (µc, µd, σc, σd, ρ, γ, δ, ψ, P ).

Following the analysis in Garcia, Meddahi, and Tédongap (2008), we consider a four-state

model with parameters for the consumption and dividend growth processes calibrated to match

the empirical moments reported by Lettau, Ludvigson, and Wachter (2008). Specifically, the

means and volatilities of the consumption and dividend growth processes across the four states (in

percent/year) are µc =
�

0.62 0.62 −0.32 −0.32
�
; µd =

�
2.80 2.80 −1.45 −1.45

�
;

σc =
�

0.75 0.40 0.75 0.40
�
; σd =

�
3.36 1.82 3.36 1.82

�
. Volatility of consumption

and dividend growth is highest in states one and three and lowest in states two and four, while

the mean growth rates are highest in states one and two and lowest in states three and four.

Consistent with a configuration in Bonomo, Garcia, Meddahi, and Tédongap (2011), preference

parameters are set to ψ = 0.5, γ = 30, δ = 0.9925. The only additional parameters in our

analysis are the pairwise correlations between dividend and consumption growth which we set

to ρ =
�

3/4 1/4 1/4 1/4
�
, so that the first state has a higher correlation parameter than

the other states.

The left graph in Figure 5 plots the conditional expected excess return against the conditional

volatility implied by the model. Expected returns and conditional volatility are lowest in the

second state (which has low volatility and high mean dividend and consumption growth) and

both increase as we move through states four and one which, compared with state two, experience

either higher volatility or lower mean consumption and dividend growth. While return volatility

is highest in state three, the expected return is lower in this state than in state one. This

happens because of the higher correlation between dividend and consumption growth in state

one compared with the third state. Although return volatility is very high in state three, marginal

utility of consumption and stock returns are less strongly correlated in this state than in state

one, which means that the market portfolio acts as a hedge in state three. Figure 5 shows how

this translates into a non-monotonic relation between the conditional volatility and expected

returns in a way that matches our empirical findings.

This analysis suggests that the conventional positive link between conditional volatility and

expected returns can be broken when the relation between marginal utility and asset payoffs

is weakened. One risk measure that is less subject to this issue because it more closely tracks

the covariance between excess returns and marginal utility is the conditional covariance between
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consumption growth and excess returns. In the present model this can be shown to be given by

Covt(R
e
t+1,∆ct+1) = (λ�

2ζt)
�
(λ1 + e)� Pζt

�
ρ
�
ζt. (19)

The right graph in Figure 5 plots the expected return against the conditional covariance of excess

returns and consumption growth. For this measure of risk, a monotonic relation is obtained. The

conditional covariance increases as we move from state two through states four, three and state

one. Expected returns increase in the same order. This motivates an extension of the volatility

or variance risk measures to a measure that incorporates covariance risk.

5 Conditional Covariance Risk

Up to now we have used conditional market volatility as our proxy for risk. However, consump-

tion asset pricing models suggest that the covariance between returns and consumption growth

would be a more appropriate measure of risk (Breeden (1979)), while the ICAPM (Merton (1973))

suggests including further state variables tracking time-varying investment opportunities. For

example, Merton derived a relationship between the conditional expectation of excess returns on

the market portfolio, Et[rt+1], its conditional variance, σ2
t+1|t, and the conditional covariance be-

tween market returns and state variables capturing time variations in the investment opportunity

set, Covt+1|t:

Et[rt+1] = aWσ
2
t+1|t + bWxCovt+1|t. (20)

Here aW measures the representative investor’s relative risk aversion and bWx depends on the

sensitivity of the investor’s indirect utility function with respect to wealth (W ) and state variables

(x). Leaving out the conditional covariance term from Eq. (20) could lead to omitted variable

bias and so must be addressed (Guo and Whitelaw (2006)).

Consumption based asset pricing models lead to similar suggestions. For example, when the

representative investor has power utility, u(Ct+1) = C
1−γ
t+1 /(1 − γ), γ ≥ 0, and consumption

growth is log-normally distributed, expected excess returns on the stock market portfolio satisfy

Et[rt+1] ≈ γcovt(∆ct+1, rt+1), (21)
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where covt(∆ct+1, rt+1) is the conditional covariance between consumption growth, ∆ct+1, and

stock returns. A broader result is obtained under weaker assumptions requiring only concave

utility and a positive relation between consumption growth and stock returns:

∂Et[rt+1]

∂covt(∆ct+1, rt+1)
> 0. (22)

When consumption growth is unobserved, this result is not very useful. However, a similar result

holds if an economic activity variable is used to proxy for consumption growth, provided that

there is a monotonically increasing relation−not necessarily a linear one−between consumption

growth and changes in economic activity, ∆At+1 :

∂Et[rt+1]

∂covt(∆At+1, rt+1)
> 0. (23)

Intuitively, the higher the covariance between changes to economic activity and stock market

returns, the lower returns tend to be during economic recessions where marginal utility of con-

sumption is high, suggesting that stocks are a poor hedge against shocks to marginal utility.

Hence, investors must be offered a higher expected return to induce them to hold stocks. We

next show how an estimate of covt(∆EAt+1, rt+1) can be constructed from daily data on economic

activity.

5.1 Realized Covariance

There is no proxy for the covariance term in Eq. (20) equivalent to the realized variance measure

in Eq. (6). To overcome this, we construct a new measure based on the covariance between stock

market returns and a high frequency proxy for economic activity measured by means of the ADS

business conditions index proposed by Arouba, Diebold, and Scotti (2009). Daily data on this

are available back to 1960.

The ADS index is designed to track high frequency (daily) business conditions. Its underlying

economic indicators (daily spreads between 10-year and 3-month Treasury yields, weekly initial

jobless claims, monthly payroll employment, industrial production, personal income less transfer

payments, manufacturing and trade sales, and quarterly real GDP) optimally blend high- and

low-frequency information and stock and flow data. The top window in Figure 6 plots the ADS
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index over the period 1960-2008. The index displays a clear cyclical pattern with distinct declines

during economic recessions.

The ADS index is a broad measure of economic activity so it seems reasonable to expect that

consumption growth is positively correlated with this index. Because daily consumption data is

not available, we consider instead the correlation between changes to the ADS index and real

consumption growth at monthly, quarterly, semi-annual and annual horizons. Correlations are

uniformly positive and increase with the horizon, rising from 0.15-0.20 at the monthly horizon

to 0.40-0.50 at the semi-annual and 0.50 at the annual horizon, irrespective of whether durable

or nondurable real consumption is used.

These findings are consistent with a monotonically increasing relation between consumption

growth and changes to the ADS index and suggest that we can use high frequency changes to

this index as a proxy for the unobserved consumption growth or, alternatively, as a proxy for

time-varying investment opportunities. Specifically, we compute monthly “realized covariances”

between stock returns and changes in the ADS index from observations at the daily frequency,

�covt =
Nt�

i=1

∆ADSi,t × ri,t, (24)

where ∆ADSi,t is the change in the ADS index on day i during month t, and ri,t is the corre-

sponding stock market return.

The bottom window in Figure 6 plots monthly (scaled) values of the conditional covariance

between changes to the ADS index and stock returns. The conditional covariance is distinctly

countercyclical and rises during economic recessions.

5.2 Empirical Results

We next extend the risk-return model to include estimates of our new conditional covariance

measure in addition to the earlier measure of conditional volatility. We estimate both linear and

flexible risk-return specifications that control for dynamic effects:

µ̂t+1|t = α+ β1�σ2
t+1|t + β2 �covt+1|t + β3�µt|t−1 + β4 �covt|t−1 + β5�σ2

t|t−1 + εt+1, (25)

µ̂t+1|t = f(�σ2
t+1|t, �covt+1|t, �µt|t−1, �covt|t−1, �σ2

t|t−1) + εt+1. (26)
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To the extent that the consumption CAPM is valid and our conditional covariance measure

proxies well for time-variations in consumption betas, we would expect only the covariance terms

to be significant. Conversely, if the ICAPM better describes the data, both the conditional

volatility and the covariance should be significant.14

Table 4 presents estimation results for the models in Eqs. (25-26) using data over the sample,

1960-2008, for which the covariance measure can be estimated. For the linear model shown in

Panel A, the coefficient on the conditional variance is insignificant with a t-statistic below one.

In contrast, the coefficient on the conditional covariance is positive and highly significant with a

t-statistic above six.

Turning to the flexible specification reported in Panel B, the covariance measure is most

important in explaining variations in expected returns. The conditional covariance, �covt+1|t

obtains a relative influence of 13.4% which is significantly different from zero (p-value of 0.0%),

whereas the relative importance of the conditional variance, �σ2
t+1|t, is 6.1% (p-value of 14%).

Panel C shows that the null hypothesis of a monotonically increasing relation between the

conditional covariance and expected returns is not rejected. Conversely, we reject, in two out of

three cases, that there is a monotonic relation between the conditional volatility and expected

returns.15

Figure 7 shows that the partial dependence plots for the joint model in Eq. (26) further

corroborate these findings. Expected returns increase monotonically in the conditional covari-

ance, whereas the expected return-conditional volatility relation rises at first but then declines

at higher levels of volatility. Moreover, expected returns vary by approximately 5% per annum

due to variations in the conditional covariance but change by less than 2% per annum due to

variations in the conditional variance.

Guo and Whitelaw (2006) also include a covariance estimate of time-varying investment op-

portunities in their analysis of the risk-return relation. In common with much of the literature,

14Suppose that the economic activity index depends both on consumption growth and state variables, xt+1, that
track time-varying investment opportunities, i.e.,

∆EAt+1 = λ0 + λ1∆ct+1 + λ2xt+1.

Then it follows that the specifications in Eqs. (25) and (26) nest both the consumption CAPM (if λ2 = 0 and
conditional volatility does not matter in explaining variations in expected returns) and the ICAPM (if λ2 �= 0).

15The case where we fail to reject compares fewer portfolios and so could excessively smooth out nonmonotonicities
in the expected return-variance relation.
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they assume that f is a linear function of both �σ2
t+1|t and �covt+1|t and they compute �σ2

t+1|t and

�covt+1|t from linear projections on observable state variables. However, the plots in the bottom

row in Figure 4 show that the conditional covariance is a highly nonlinear function of the most

important state variables such as inflation, the payout rate and long term returns, suggesting

that linear models for the covariance are misspecified. Corroborating this, the bottom rows of

Panel B in Table 2 show that linear specifications for the conditional covariance are clearly mis-

specified. While there is evidence that the BRT covariance estimates are also misspecified, this is

driven by a single observation following the default of Lehmann (October 2008) which represents

an extreme outlier for the realized covariance measure. Without this single observation, the BRT

estimates appear to be correctly specified, while the linear estimates are not.

6 Extensions and Robustness Analysis

We finally report some results that shed light on the robustness of our findings with regard to

the underlying economic predictor variables and the implementation of the boosted regression

tree methodology. To address the concern that our methodology could overfit the return and

volatility data, however, we first provide out-of-sample forecasting results.

6.1 Out-of-sample forecasting performance

Our analysis suggests that a range of predictor variables from the finance literature capture time

variations in expected returns, volatility and covariance. Moreover, the effect of these variables

appears to be nonlinear. However, the boosted regression trees could be more prone to estimation

error and overfitting than more tightly parameterized linear regressions. It is therefore far from

certain that our approach provides a useful way to generate estimates of expected returns and

conditional volatility.

To explore this point, we follow the literature on out-of-sample forecasting and estimate

forecasting models recursively through time.16 We use data up to 1969:12 to fit the first regression

tree. We then predict returns or volatility for the following month, 1970:01. The next month we

16See, e.g., Pesaran and Timmermann (1995), Bossaerts and Hillion (1999), Campbell and Thompson (2008), and
Welch and Goyal (2008) for mean returns and Engle, Ghysels, and Sohn (2006) and Paye (2010) for volatility fore-
casting.
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expand the data window to 1970:01 and produce forecasts for 1970:02. This procedure continues

to the end of the sample in 2008:12.

We limit our analysis of out-of-sample forecasts to returns and realized volatility. For these

variables we have a sufficiently long data sample that we can estimate the forecasting models

with reasonable precision at the start of the out-of-sample period. In contrast, this is an issue

for the realized covariance measure since the economic activity data only begin in 1960, leaving

too short an out-of-sample period for a meaningful model comparison.

6.1.1 Return forecasts

As a first check of whether the boosted regression trees overfit the data, consider the top window

in Figure 8 which shows return forecasts over the period 1985-2008. While there is a visible

relation between actual and predicted returns, there is no tendency for the model to fit outliers.

Indeed, the fitted values are confined to a far narrower range than actual returns.

Next consider the out-of-sample forecasting performance of the boosted regression trees. Panel

A1 in Table 5 compares the performance of the forecasts of returns from the boosted regression

trees to that from the prevailing mean, a benchmark advocated by Welch and Goyal (2008), and

multivariate linear regressions.17

We present results separately up to 2005 (the end of Welch and Goyal’s original sample)

and for the sample extended up to 2008. This serves to illustrate the substantial deterioration in

forecasting performance during the very volatile period, 2007-2008. Both the prevailing mean and

the multivariate linear regression model generate negative out-of-sample R2−values. The boosted

regression tree model generates more precise out-of-sample forecasts than the prevailing mean

model as witnessed by its smaller sum of squared forecast errors and its positive R
2−values

in both subsamples, although the difference is reduced in the period that includes the recent

financial crisis.

6.1.2 Volatility forecasts

Turning to the volatility forecasts, Panel A2 of Table 5 and the bottom panel in Figure 8 compare

volatility forecasts from the regression tree to those from a GARCH(1,1) model or an autoregres-

17For the latter, we use the Bayesian information criterion to select the best specification among the 212 possible
linear models that use different combinations of the predictor variables.
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sive model that exploits the persistence in realized volatility. We also consider forecasts from a

MIDAS model of the form proposed by Ghysels, Santa-Clara, and Valkanov (2005). Following

their analysis, we adopt a MIDAS estimator of the conditional variance of monthly returns:

V art(Rt+1) = 22
D�

d=0

wdr
2
t−d, (27)

where

wd(κ1, κ2) =
exp(κ1d+ κ2d

2)
�D

i=0 exp(κ1i+ κ2i
2)
,

wd(κ1, κ2) =

�
d
D

�κ1−1 �
1− d

D

�κ2−1

�D
i=0

�
i
D

�κ1−1 �
1− i

D

�κ2−1

for the models that use exponential and beta weights, respectively. D is the maximum lag length

which is set to 250 days following Ghysels, Santa-Clara, and Valkanov (2005). The bottom

window in Figure 8 plots the fitted volatility levels associated with the GARCH(1,1), MIDAS

and the boosted regression trees.

In the shorter sample that ends in 2005, the best volatility forecasts are generated by the

boosted regression trees which produce smaller forecast errors and an out-of-sample R
2−value

of 34% which is substantially higher than for the other models. In the longer sample, 1970-2008,

that includes the recent financial crisis, we see larger forecast errors but also greater out-of-sample

R
2-values, reflecting the persistently high volatility levels at the end of this period. However, the

boosted regression trees continue to generate the best volatility forecasts.

In summary, this out-of-sample analysis shows that the boosted regression tree estimates of

the conditional mean and volatility are not overfitting the data. Moreover, because they do

not make restrictive assumptions on the shape of the relation between predictor variables and

the conditional mean or volatility, such estimates are less likely to be biased than conventional

estimates based on linear regression models. This suggests that our estimates of the conditional

equity premium and conditional volatility are better suited for analyzing the risk-return trade-off

than estimates from linear models.
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6.2 Confidence Interval for the Fitted Risk-Return Relation

It is natural to ask how precisely the regression function relating the risk and return estimates

is estimated. We are unaware of methods for constructing confidence intervals on the estimates

from boosted regression trees. However, using Bayesian additive regression trees (BART), which

is a nonparametric regression method based on boosting, we can construct interval estimates for

the unknown regression function. While BRTs and BARTs are similar in many respects, the

latter have two distinctive features. First, the contribution of each tree to the final BART model

is reduced by imposing a prior that regularizes its fit, and not a shrinkage parameter as in BRT.

Second, the iterative construction and fit of successive BART residuals is performed by way of

Bayesian backfitting MCMC instead of the steepest descent used in BRT. Our implementation

employs the prior forms specified in Chipman, George, and McCulloch (1998), and the standard

choice of hyper-parameters contained in Chipman, George, and McCulloch (2010).

Figure 9 presents confidence intervals on the resulting regression trees for the model that

includes volatility and covariance as risk measures. Although the confidence bands are quite

wide for the graph linking expected returns to the conditional volatility, they are tight enough

to suggest a clear non-monotonic risk-return pattern. Conversely, the relation between expected

returns and the conditional covariance measure appears markedly monotonic after accounting

for parameter estimation error.

6.3 Estimation Errors

In common with most studies in the literature on the risk-return relation, our analysis has so far

ignored the fact that we use estimates in place of ‘true’ values for expected return and volatility.

This could potentially bias parameter estimates. To deal with this, Ludvigsson and Ng (2007)

estimate the linear risk-return model in Eq. (8) using two-stage least squares, instrumenting

σ̂t|t−1 through the lagged variables µ̂t−1|t−2, µ̂t−2|t−3, σ̂t−1|t−2, σ̂t−2|t−3, rt−1, and σ̂t−1.

To see if estimation errors affect our results, we conduct a similar analysis. In the first step, we

obtain a BRT estimate of σ̂t|t−1, denoted σ̃t|t−1, using the same instruments as in Ludvigson and

Ng (2007). We then use the BRT to estimate the expected return with the instrumented value,

σ̃t|t−1, as a predictor variable. The resulting plot relating the conditional mean and conditional

volatility estimate is very similar to that reported earlier in Figure 3 and is therefore omitted.
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We also cast the two-stage least square estimate as a GMM regression, approximating the non-

linear risk-return relation through a second-order polynomial with instruments identical to those

used by Ludvigson and Ng. The resulting instrumented estimate of the coefficient on σ̃t|t−1is

positive and highly significant, while the coefficient on σ̃
2
t|t−1 is negative and highly significant,

giving rise to a risk-return relation that increases for low values, but decreases for high values of

the conditional volatility.

Finally, we adopted the GMM approach with the Ludvigson-Ng instruments for σ̂t|t−1 us-

ing the earlier threshold regression from Eq. (10). The result obtained with the instrumental

variables approach is again very similar to the earlier one:

µ̂t+1|t =






−0.006 + 29.532 σ̂
2
IV,t+1|t for σ̂

2
IV,t+1|t ≤ (0.0253)2

(−2.50) (7.04)

0.009 − 0.562 σ̂
2
IV,t+1|t for σ̂

2
IV,t+1|t > (0.0253)2

(23.77) (−5.80)

(28)

In summary, these results suggest that errors-in-variables problems in the conditional mean and

variance estimates do not affect our results in any meaningful manner.

6.4 Robustness of boosting regression tree results

Our benchmark analysis uses 10,000 boosting iterations to estimate the regression trees. We

next explore the sensitivity of the results to different ways of choosing the number of boosting

iterations. As a first robustness exercise, Panel B1 of Table 5 reports the out-of-sample forecasting

performance of boosted regression trees using 5,000, 10,000 and 15,000 boosting iterations.18 The

results are not particularly sensitive to this choice. On the whole, the regression tree forecasts

outperform the benchmarks listed in Panel A for both the return and volatility series.

To further corroborate these results, Figure 10 presents out-of-sample R2−values as the num-

ber of boosting iterations is varied from 100 to 15,000. Signs of overfitting would take the form

of a declining R
2−value as the number of boosting iterations rises beyond a certain point. For

stock returns there is evidence only of a very slow decay in forecasting accuracy beyond 7,000

boosting iterations. There are no signs of over-fitting for the volatility prediction model. This

18Since these are based on out-of-sample forecasts, we only report results for the mean and volatility.
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stability across different numbers of boosting iterations, B, makes the choice of the number of

boosting iterations of little significance to our analysis.

We finally consider two alternative ways for selecting the number of boosting iterations that

could be used in real time, a point emphasized by Bai and Ng (2009). The first chooses the best

model, i.e., the optimal number of boosting iterations, recursively through time. Thus, at time

t, the number of boosting iterations is only based on model performance up to time t. Second,

we use forecast combinations as a way to lower the sensitivity of our results to the choice of B by

using the simple average of the forecasts from regression trees with B =1, 2, ..., 10,000 boosting

iterations.

Panel B1 in Table 5 shows that the combined average is particularly effective in generating

precise return predictions. Selecting the best model on the basis of recent performance appears

to be more effective for volatility prediction (Panel B2).

7 Conclusion

This paper proposes a new and flexible approach to modeling the risk-return relation that avoids

imposing strong functional form assumptions. The approach can handle large sets of state vari-

ables and is not prone to overfitting the data. Hence it is not subject to the misspecification

and omitted variable biases that have been a big concern in empirical studies of the risk-return

trade-off.

Using this approach on US stock return data, our empirical analysis finds that there is a

positive trade-off between conditional volatility and expected returns at low or medium levels of

conditional volatility, but that the relation is flat or inverted during periods with high volatility.

These findings make it easier to understand why so many empirical studies differ in their findings

on the sign and magnitude of the conditional volatility-mean return relation.

The non-monotonic trade-off between conditional volatility and expected returns uncovered

in our analysis indicates limitations of conditional volatility as a measure of risk. To address

this, we develop a high-frequency risk measure that captures the covariance between a broad

economic activity index and stock returns. Changes to the economic activity index are shown to

be strongly positively correlated with consumption growth at horizons of one month or longer,

and have the further advantage that they are measured at the daily frequency. This enables us to
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compute ‘realized covariances’ and facilitates estimation of conditional covariance risk. We find

strong and significant evidence of a monotonically increasing relation between expected stock

returns and conditional covariance risk. This suggests that there is indeed a positive risk-return

trade-off, but that it is important to use a broad measure of risk that account for the state of

the economy.
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Table 2. Model Specification Tests

A. Risk-Return Relation

Model
Baseline Results Model with Factors

Coeff. p-val Coeff. p-val

F-test p-val F-test p-val

Linear (Volatility) 8.807 0.000 1.961 0.069

Linear (Variance) 52.297 0.000 4.244 0.000

BRT (Volatility) 0.919 0.508 0.533 0.851

BRT (Variance) 0.579 0.815 0.298 0.975

GARCH(1,1) 25.143 0.000 2.113 0.050

MIDAS 7.703 0.000 0.719 0.635

B. Moment Estimates

B.I. Mean

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 4.538 0.001 2.210 0.067

BRT 0.964 0.509 0.982 0.486

B.II. Variance

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 10.226 0.000 6.168 0.000

BRT 0.933 0.550 0.873 0.632

GARCH(1,1) 10.968 0.000 — —

MIDAS 3.759 0.000 — —

B.III. Covariance

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 4.605 0.000 2.084 0.125

BRT 3.355 0.000 1.213 0.229

This table presents Ramsey RESET specification tests applied to different models for the risk-
return relation (Panel A) or the underlying conditional mean (Panel B.I), variance (Panel
B.II) and covariance (Panel B.III). The null is that a model is correctly specified, so a small
p-value (i.e., below 0.05) indicates misspecification. The linear and boosted regression tree
(BRT) models use the state variables described in Section 3.1 as predictors, while the MIDAS
and GARCH(1,1) models are based on past returns. The baseline results are based on the
full sample (1927-2008), while the factor results use a shorter period (1960-2007) for which
data on 131 underlying economic variables are available.
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Table 3. Tests for a monotonically increasing

risk-return relation

Group size

Horizon (months) Small Medium Large

A. Volatility estimates

1 0.000 0.018 0.010

2 0.000 0.000 0.017

3 0.000 0.000 0.039

B. VIX-based estimates

1 0.027 0.041 0.091

This table presents the results of a test of whether the relationship between conditional
risk and expected returns is monotonic after marginalizing out the effect of lagged risk and
lagged expected returns. The test uses pairs of expected return, risk observations that are
sorted on the basis of the conditional risk measure (volatility or VIX), yielding groups of
observations corresponding to different levels of risk. The number of monthly observations
in the small, medium and large groups or “portfolios” are approximately 40, 50 and 65. We
then test if the associated mean return is monotonically increasing as we move from low to
high risk observations. Each entry reports the p-value of a Wolak test that entertains the null
hypothesis of an increasing and monotonic relation between expected returns and conditional
volatility against the alternative of a decreasing or non-monotonic relation. Small p-values
indicate rejection of a monotonically increasing risk-return relation. In panel A, estimates
of the conditional mean and volatility are based on boosted regression trees that use the
state variables from Section 3.1. The Chicago Board Options Exchange Volatility Index, also
known as the VIX, is used as a proxy for the conditional volatility in Panel B.
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Table 4. Estimates and tests of the covariance model

A. Linear model

µ̂t+1|t = α+ β1σ̂2
t+1|t + β2 �covt+1|t + β3µ̂t|t−1 + β4σ̂2

t|t−1 + β5 �covt|t−1 + �t+1

Sample σ̂2
t+1|t �covt+1|t µ̂t|t−1 σ̂2

t|t−1 �covt|t−1

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

1960-2008
0.207 0.011 0.660 -0.112 -0.006
(0.74) (6.16) (20.70) (-0.37%) (-3.20%)

B. Flexible model

Relative influence measures

Model: µ̂t+1|t = f(σ̂2
t+1|t, �covt+1|t, µ̂t|t−1, σ̂

2
t|t−1, �covt|t−1)

Sample σ̂2
t+1|t �covt+1|t µ̂t|t−1 σ̂2

t|t−1 �covt|t−1

1960-2008
6.16% 13.45% 67.50% 6.37% 6.52%
(14.0%) (0.0%) (0.0%) (11.4%) (15.9%)

C. Monotonicity tests

Group size

Small Medium Large

Conditional Variance 0.0000 0.0260 0.2567

Small Medium Large

Conditional Covariance 0.2355 0.2359 0.8242

This table reports estimates of the effect on the conditional mean return, µ̂t+1|t, of the
conditional variance, σ̂2

t+1|t, the conditional covariance between stock returns and changes

to economic activity, �covt+1|t, the lagged conditional mean return, µ̂t|t−1, lagged variance,
σ̂2
t|t−1, and lagged covariance, �covt|t−1. Panel A reports estimates and t-statistics from a

linear model. Panel B shows relative influence estimates (in percent) from the boosted
regression tree model. In parentheses we present the significance of the relative influence
estimates by way of Monte Carlo p-values. Panel C presents the results of a test of whether
the relation between conditional variance or conditional covariance) and expected returns
is monotonic after marginalizing out the effect of the other variables in the model. Each
entry reports the p-value of a Wolak test that entertains the null hypothesis of an increasing
and monotonic relation between expected returns and conditional variance (or conditional
covariance). Small p-values indicate rejection of a monotonically increasing relation. The
number of observations in the small, medium and large portfolios are approximately 40, 50
and 65.
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(a) 1 Iteration (b) 5 Iterations (c) 10,000 Iterations

(d) 1 Iteration (e) 5 Iterations (f) 10,000 Iterations

(g) 1 Iteration (h) 5 Iterations (i) 10,000 Iterations

Figure 2: Fitted values from linear regression and boosted regression trees. The
top row assumes the true relation is linear, the middle row assumes an inverted V-shaped
relation, while the bottom row assumes the true relation is first linear, then quadratic. The
number of boosting iterations is set to one (left column), five (middle column), or 10,000
(right column).
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Panel A. Expected Returns

Panel B. Volatility

Panel C. Covariance

Figure 4: Effect of predictor variables on conditional moments. The figures present
partial dependence plots for the mean excess return (Panel A), the conditional volatility
(Panel B) and the conditional covariance (Panel C) based on the three predictor variables
with the highest relative influence during 1927-2008, namely inflation (infl), the log earnings
price ratio (ep), and the detrended T-Bill rate (rrel) for returns; the lagged stock market
volatility (vol), the default spread (defspr) and the excess return on stocks (exc) for volatility;
inflation (infl), the log dividend earnings ratio (de), and the long-term rate of return (ltr)
for the covariance. The horizontal axis covers the sample support of the individual predictor
variables, while the vertical axis tracks the change in the conditional equity premium as a
function of the individual predictor variables.
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Figure 5: Risk-Return relation in a dynamic asset pricing model. This figure plots
the conditional expected excess returns against the conditional volatility (left graph) and
the conditional covariance (right graph) implied by the four-state regime switching model
proposed by Garcia et al. (2008). The left plot shows a non-monotonic relation between
conditional volatility and expected returns. The state with the highest conditional volatility
has a weaker correlation between consumption and dividend growth than the other states.
This means that the market portfolio provides a partial hedge against adverse shocks to
consumption in this state, resulting in a reduced equity premium. Conversely, the right plot
shows that there is a monotonically increasing relation between expected returns and the
conditional covariance between consumption growth and stock returns.
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ADS Index

Conditional Covariance

Figure 6: ADS index and the conditional covariance measure. This figure plots the
ADS index at the monthly frequency in the top panel and the scaled conditional covariance
between changes in the ADS index and stock returns in the bottom panel. The scaled
conditional covariances are obtained as follows. First, monthly realized covariances between
changes in the ADS index and stock returns are obtained using observations at the daily
frequency. The scaled changes in the ADS Index are obtained by dividing the change to the
ADS Index by the standard deviation of returns times the standard deviation of changes to
the index. Finally, the conditional covariances are estimated by way of boosted regression
trees.
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Panel A. Baseline Model

Panel B. Model With Factors

Figure 7: Risk-return trade-off in the model with the conditional covariance risk
measure. The figure shows partial dependence plots for the conditional mean return as
a function of the conditional volatility (vol) and the conditional covariance between stock
returns and changes to economic activity (cov). The plot is based on a boosted regression tree,
using data over the sample 1960-2008 in Panel A and 1960-2007 in Panel B. The horizontal
axis covers the sample support of each predictor variable, while the vertical axis tracks the
change in the conditional mean as a function of the individual state variables. In Panel A,
the conditioning information is the predictor variables described in Section 3.1. In Panel
B the conditioning information is the principal components derived from a set of 131 state
variables and the three most important variables selected from the predictors in Section 3.1.
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Excess Returns

Realized Volatility

Figure 8: Actual versus out-of-sample predicted values of returns and realized volatility. The
top graph shows the time series of excess returns plotted against out-of-sample predicted
values from a boosted regression tree model and the prevailing mean. The bottom graph
plots the realized volatility against the predicted values from a boosted regression tree, a
GARCH(1,1) model and a MIDAS model with beta weights.

49



0.02 0.03 0.04 0.05

0.
00
0

0.
00
5

0.
01
0

vol

pa
rti
al
-d
ep
en
de
nc
e

-0.2 0.0 0.2 0.4

-0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

cov

pa
rti
al
-d
ep
en
de
nc
e

Figure 9: Confidence bands on the risk-return relation for the model with the
conditional covariance risk measure. The figure shows partial dependence plots for the
conditional mean return as a function of the conditional volatility (vol) and the conditional
covariance between stock returns and changes to economic activity (cov). The plot is based
on a Bayesian Additive Regression Tree (BART), using data over the sample 1960-2007. The
horizontal axis covers the sample support of each predictor variable, while the vertical axis
tracks the change in the conditional mean as a function of the individual state variables as
well as its 90% confidence interval. Each circle represents one of the 10 quantiles of the
volatility and covariance distributions (from the 5th to the 95th) at which the confidence
intervals are computed. The conditioning information is the principal components derived
from a set of 131 state variables and the three most important variables selected from the
predictors in Section 3.1.
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Figure 10: Out-of-sample forecasting performance (R-squared) of the boosted regression trees
as a function of the number of boosting iterations (listed on the horizontal axis). The top
panel shows results for excess returns, while the bottom panel covers the realized volatility.
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