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I. Introduction

Dynamics in the labor market are an integral component of business cycles. More than 10

percent of U.S. workers separate from their employers each quarter. Some move directly to a

new job with a different employer, some become unemployed and some exit the labor force.

These large flows, however, are very costly for firms because they need to spend time and

resources to search for new employees.1

Building on the seminal contributions of Diamond (1982), Mortensen (1972, 1982), and

Pissarides (1985, 2000), we show that labor search frictions are an important determinant

of the cross-section of equity returns.2 In search models, firms post vacancies looking for

workers, and unemployed workers search for jobs. The likelihood of matching a worker with

a vacant job is determined endogenously and depends on the congestion of the labor market

which is measured as ratio of vacant positions to unemployed workers. This ratio is usually

referred to as labor market tightness and is the key variable of our analysis.

We begin by studying the empirical relation between labor market conditions and the cross

section of equity returns. To construct aggregate labor market tightness, we compute the ratio

of the monthly vacancy index from the Conference Board to the unemployed population.

Rather than using the unemployment rate as a proxy for the unemployed population,3 we

normalize employment by the total population, thereby correcting for time variation in the

labor force participation rate as reported by the Bureau of Labor Statistics. Consistent with

the empirical exercise, shocks to the labor force participation rate are a key driver of the

model.

To measure the sensitivity of firm value to labor market conditions, we estimate loadings

of equity returns with respect to log changes in labor market tightness controlling for the

1These search costs arise because of heterogeneity among workers and jobs and information imperfections.
Davis, Faberman, and Haltiwanger (2006) document that the average duration for a job position being vacant
ranges from 14 to 25 days. “According to the U.S. Department of Labor, it costs one-third of a new hire’s
annual salary to replace them. Direct costs include advertising, sign on bonuses, headhunter fees and overtime.
Indirect costs include recruitment, selection and training and decreased productivity while current employees
pick up the slack.” (Advance Online)

2The importance of labor market dynamics for the business cycle has long been recognized (e.g., Merz
(1995) and Andolfatto (1996)).

3See for instance Shimer (2005) and Hornstein, Krusell, and Violantel (2005).
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market return. We use rolling regressions based on three years of monthly data to allow for

time variation in the loadings. Using the panel of US stock returns over the 1954 to 2009

period, we show that the loadings on the changes in the labor market tightness robustly and

negatively relate to future stock returns in the cross section. Sorting stocks into deciles on the

basis of the estimated loadings, we find an average return spread between firms in the low-

and high-loading portfolios of 6% per year. This difference cannot be explained by commonly

considered asset pricing models, for example, the Fama and French (1993) three-factor model.

Portfolio sorts are potentially problematic as such univariate analysis fails to account for

other firm characteristics that have been shown to relate to future returns. To ensure that

the relation between labor search frictions and future stock returns is not attributable to such

characteristics, we also run Fama and MacBeth (1973) regressions of annual stock returns

on the estimated loadings and other firm attributes. We include conventionally used control

variables such as a firm’s market capitalization and recently documented determinants of the

cross-section of stock returns that may potentially correlate with the estimated loadings, such

as new hiring rates of Bazdresch, Belo, and Lin (2012).

The Fama-MacBeth analysis confirms the robustness of results obtained in simple portfolio

sorts. The coefficients of the labor market tightness loadings are negative and statistically

significant in all regression specifications. The magnitude of the coefficients suggests that the

relation is economically important: for each one standard deviation increase in the loading,

subsequent annual returns decline by approximately 1.4%.

To interpret the empirical findings, we propose a labor augmented capital asset pricing

model. We build a partial equilibrium labor market model and study its implications for

firm employment policies and stock returns. For tractability we do not model the supply

of labor as optimal households decisions, instead we assume an exogenous pricing kernel.

Our model features a cross section of firms with heterogeneity in their idiosyncratic shocks

and employment levels, extending the representative firm framework in Pissarides (1985) and

Mortensen and Pissarides (1994). Firms maximize their value either by posting vacancies to

recruit workers or by firing workers to downsize. Both firm policies are costly at proportional
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rates.

In our model, the fraction of successfully filled vacancies depends on labor market tightness

which results from the aggregation of firms vacancy policies. As such, equilibrium in the labor

market requires that firm hiring policies are consistent with the implied labor market tightness.

This imperfect labor market matching creates rents in equilibrium which are shared between

each firm and its workforce according to a collective Nash Bargaining wage rate.

Our model is driven by two aggregate shocks, both of which are priced. The first shock

is an aggregate productivity shock which proxies for the market return. The second shock is

a shock to the mass of workers which we interpret as labor market participation shock. A

positive labor market participation shock reduces the congestion of the labor market as there

are more unemployed workers looking for jobs. As a result, posting vacancies to hire workers

becomes more attractive for firms.

Quantitatively, our model replicates the negative relation between loadings on labor mar-

ket tightness and future returns. As an equilibrium outcome of the labor market, labor market

tightness is negatively related to labor market participation shocks. Consequently, firms with

low labor market tightness loadings are very sensitive to labor market conditions arising from

labor force participation shocks. After an adverse labor force participation shock, these firms

face higher average recruiting costs as the labor market becomes more congested. As a result,

these firms are riskier and require higher risk premia as their cash flows are not hedged against

adverse labor force shocks.

To solve the model numerically we follow the idea of approximate aggregation introduced

in Krusell and Smith (1998). We approximate the firm level distribution with labor market

tightness which is a sufficient statistic to solve the firm’s problem. Its dynamics are approx-

imated with a log-linear functional form. The application of Krusell and Smith (1998) here

differs from Zhang (2005) in an important way. Zhang (2005) assumes that firms can per-

fectly forecast the next period’s industry equilibrium given the current information set. In

contrast, we assume that future labor market tightness is stochastic and firms form rational

expectations about it. This modeling assumption is consistent with our empirical evidence
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that stock return loadings with respect to labor market tightness affect valuations.

Our paper builds on the production based asset pricing literature started by Cochrane

(1991) and Jermann (1998). Pioneered by Berk, Green, and Naik (1999), there exists now

a large literature studying cross sectional asset pricing implications of firm real investment

decisions, for instance, Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino

(2004), Zhang (2005), and Cooper (2006). More closely related are Papanikolaou (2011), and

Kogan and Papanikolaou (2012a,b) who highlight that investment specific shocks are related

to firm risk premia. We differ by studying frictions on the labor market and specifically shocks

to the labor force.

The impact of labor market frictions on the aggregate stock market has been analyzed

by Danthine and Donaldson (2002), Merz and Yashiv (2007), and Kuehn, Petrosky-Nadeau,

and Zhang (2012). Along this line, there also exist recent papers linking cross-sectional asset

prices to labor related firm characteristics. Gourio (2007), Chen, Kacperczyk, and Ortiz-

Molina (2011) and Favilukis and Lin (2012) consider labor operating leverage coming from

rigid wages, Donangelo (2012) focuses on labor mobilities, Eisfeldt and Papanikolaou (2012)

study organizational capital embedded in specialized labor input, and Bazdresch, Belo, and

Lin (2012) analyze convex labor adjustment costs. We differ by exploring the impact of search

costs on cross sectional asset prices.

II. Empirical Results

In this section, we document a robust negative relation between the stock return correlations

with changes in labor market conditions and future equity returns. We establish this result

by studying portfolios sorted by loadings on the labor market tightness factor and confirm

it using Fama and MacBeth (1973) regressions. We also show that loadings on the factor

explain average industry returns.

A. Data

Our sample includes all common stocks (share code of 10 or 11) listed on NYSE, AMEX,

and Nasdaq (exchange code of 1, 2, or 3) available from CRSP. To obtain meaningful risk
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loadings at the end of month t, we require each stock to have non-missing returns in at least

24 of the last 36 months (t − 35 to t). Availability of data on vacancy and unemployment

rates restricts our tests based on portfolio sorts to the 1954-2009 period. Fama-MacBeth

regressions additionally require Compustat data on book equity and other firm attributes,

and consequently analysis based on those data is conducted for the 1960-2009 sample. In the

Appendix we list the exact formulas for all of the firm characteristics used in our tests.

B. Labor Market Tightness Factor

We obtain the monthly vacancy index from the Conference Board and the monthly labor force

participation and unemployment rate from the Current Population Survey of the Bureau of

Labor Statistics.4 We define labor market tightness as the ratio of total vacancy postings

to total unemployed workers. The total number of unemployed workers is the product of

unemployment rate and labor force participation rate (LFPR). Hence labor market tightness

is given by

θt =
Vacancy Indext

Unemployment Ratet × LFPRt
. (1)

Figure 1 plots the monthly time series of θt and its components. Labor market tightness

is strongly procyclical and autocorrelated as in Shimer (2005). We define the labor market

tightness factor in month t as the change in logs of this ratio:

ϑt = log(θt)− log(θt−1). (2)

The time series properties of ϑt, its components and other macro variables are summarized

in Table 1. Despite being a highly procyclical factor, ϑt does not strongly comove with other

monthly macro factors that are known to have non-zero prices of risk, such as dividend yield,

term spread, default spread, change in the consumer price index, and change in industrial

production.

4The respective websites are http://www.conference-board.org/data/helpwantedonline.cfm and
http://www.bls.gov/cps. Help Wanted Advertising Index was discontinued in October 2008 and re-
placed with the Conference Board Help Wanted OnLine index. We concatenate the two time series to obtain
the vacancy index. The index is not available after 2009 as the Conference Board replaced it with the actual
number of online advertised vacancies.
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To study the relation between stock return loadings on changes in labor market tightness

and future equity returns, we first estimate loadings βθi,τ on the ϑ factor for each stock i at

the end of each month τ from rolling two-factor model regressions

Ri,t −Rf,t = αi,τ + βMi,τ (RM,t −Rf,t) + βθi,τϑt + εi,t, (3)

where Rf,t is the risk-free rate of return, and Ri,t and RM,t are stock i and market excess

returns in month t ∈ {τ − 35, τ}. Figure 2 plots the time series of cross-sectional average,

median, and other percentiles of the loadings on the labor market tightness factor, highlighting

wide cross-sectional differences in the computed loadings. We now turn to exploring whether

these loadings have significant predictive power for stock returns.

C. Evidence from Portfolio Sorts

At the end of each month τ , we rank stocks into deciles on the basis of loadings on the

labor market tightness factor βθi,τ computed from regressions (3). We skip a month to allow

information on the vacancy and unemployment rates to become publicly available and hold

the resulting ten value-weighted portfolios without rebalancing for one year (τ + 2 through

τ + 13, inclusive). Consequently, in month τ each decile portfolio contains stocks that were

added to that decile at the end of months τ − 13 through τ − 2. This design is similar to the

approach used to construct momentum portfolios and ensures that noise due to seasonalities is

reduced. We show robustness to alternative portfolio formation methods in the next section.

Table 2 presents average firm characteristics of the resulting decile portfolios. No strong

relation emerges between loadings on the labor market tightness factor and any of the con-

sidered characteristics. Firms in the high decile are on average somewhat smaller than those

in the low group, but the relation is not monotonic. Median characteristics are qualitatively

similar to the reported averages and are omitted for brevity.

For each decile portfolio, we obtain monthly time series of returns from January 1954 until

December 2009. Table 3 summarizes raw returns of each decile and of the portfolio that is

long the decile with low loadings on the labor market tightness factor and short the group

with high loadings. Table 3 also shows loadings on market, value, size, and momentum factors

6



of each group. Firms in the high decile have somewhat larger size betas and lower value and

momentum loadings. To account for differences in risk across the deciles, we also present

alphas from market, Fama and French (1993), and Carhart (1997) models.

Both raw and risk-adjusted returns of the ten portfolios indicate a strong negative relation

between loadings on the labor market tightness factor and future stock performance. Firms

in the low βθ decile earn the highest average return, 1.14% monthly, whereas the high beta

group performs most poorly, generating on average just 0.64% per month. The difference in

performance of the two deciles, at 0.50%, is economically large and statistically significant

(t-statistic of 3.60). The corresponding differences in alphas are similarly striking, ranging

from 0.43% (t-statistic of 3.06) for Carhart four-factor alphas to 0.55% (t-statistic of 3.95) for

market model alphas.

Results of portfolio sorts thus strongly suggest that the loadings on the labor market

tightness factor are an important predictor of future returns. To evaluate robustness of this

relation over time, Panel A of Figure 3 plots cumulative returns of the portfolio that is

long the low decile and short the high group. The cumulative return is steadily increasing

throughout the sample period, indicating that the relation between the loadings on the labor

market tightness factor and future stock returns persists over time. Table 4 presents summary

statistics for returns on this portfolio and for market, value, size, and momentum factors.

The long-short labor market tightness factor portfolio is less volatile than the market or

the momentum factors (see also Panel B of Figure 3) and achieves a Sharpe ratio (0.14)

comparable to that of the value factor.

D. Evidence from Portfolio Sorts: Robustness

We now demonstrate robustness of the relation between stock return loadings on changes in

labor market tightness and future equity returns to considering alternative portfolio formation

approaches, excluding micro cap stocks, and using a modified definition of labor market

tightness factor. Table 5 summarizes the results of the robustness tests.

Portfolio formation design employed in the previous section is motivated by investment

strategies such as momentum studied the prior literature. It involves holding 12 overlapping
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portfolios and ensures that noise due to seasonalities is reduced. We consider two alterna-

tives: forming portfolios only once a year and holding the portfolios for one month. Both

alternatives ensure that no portfolios overlap. Panels A and B of Table 5 show that each of

these approaches results in even more dramatic difference in future performance of low and

high βθ deciles. For example, the difference in average returns of the low and high groups

reaches 0.62% monthly when portfolios are formed once a year, compared to 0.50% reported

in Table 3.

We next explore the sensitivity of the results to the length of time between calculation

of βθ and beginning of the holding period. Our base case results in Table 3 are obtained

assuming a one-month interval to ensure that all the variables needed to compute labor

market tightness (vacancy index, unemployment rate, and labor force participation rate) are

publicly available. The assumption is well-justified in the current markets, where the data

for any month are typically available within days after the end of that month. To allow for

a slower dissemination of data in the earlier sample, we consider a two-month period. Panel

C of Table 5 shows that the results are not sensitive to this change in the methodology: The

difference in future returns of stocks with low and high loadings on the labor market tightness

factor reaches 0.49% per month.

Panel D of Table 5 shows that the results are also robust to excluding microcaps, which

we define to include stocks with market equity below the 20th NYSE percentile. Microcaps

on average represent just 3% of the total market capitalization of all stocks listed on NYSE,

Amex, and Nasdaq, but they account for about 60% of the total number of stocks. Excluding

these stocks from the sample does not impact the results.5

We also consider robustness to an alternative definition of labor market tightness factor.

Table 1 shows that ϑt as defined in equation (2) is correlated with changes in industrial

production and other macro variables. To ensure that the relation between stock return

loadings on the labor market tightness factor and future equity returns is not driven by these

5Untabulated results also confirm robustness of the results to imposing a minimum price filter and to
excluding Nasdaq-listed stocks.
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variables, we define labor market tightness as the residual ϑ̃t from a time series regression

ϑt = γ0 + γ1IPt + γ2CPIt + γ3DYt + γ4TBt + γ5TSt + γ6DSt + ϑ̃t, (4)

where IPt, CPIt, DYt, TBt, TSt, and DSt are changes in industrial production, consumer

price index, dividend yield, T-bill rate, term spread, and default spread, respectively. The

disadvantage of this approach is that it introduces a look-ahead bias as the regression coef-

ficients are estimated using the entire sample. Yet, it allows us to focus on the component

of labor market tightness that is unrelated to other macro variables that can have non-zero

prices of risk. Panel E of Table 5 shows that our results are little affected by the change

in the definition of the labor market tightness factor: The difference in future raw and risk-

adjusted returns of portfolios with low and high loadings on the factor are always statistically

significant and economically meaningful, ranging between 0.42% and 0.46% monthly.

Finally, we also evaluate the relation between loadings βθ on the labor market tightness

factor and future equity returns conditional on stocks’ market betas βM . We sort firms

into quintiles based on their βθ and βM loadings and study subsequent returns of each of

the resulting 25 portfolios. Table A1 of the Appendix shows that irrespective of whether

we consider independent sorts or dependent sorts (e.g., first on βM and then by βθ within

each market beta quintile), stocks with low loadings on the labor market tightness factor

significantly outperform stocks with high loadings.

E. Evidence from Fama-MacBeth Regressions

The empirical evidence from portfolio sorts provides a strong indication of a negative relation

between the stock return loadings on changes in labor market tightness, βθi,τ , and subsequent

equity returns. However, such univariate analysis does not account for other firm characteris-

tics that have been shown to relate to future returns. In this section, we compare the loadings

on the labor market tightness factor to other well-established determinants of the cross-section

of stock returns. Our goal is to determine whether the ability of βθi,τ to forecast returns is sub-

sumed by other firm characteristics. To this end, we perform annual Fama-MacBeth (1973)
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regressions

Ri,T = γ0T + γ1Tβ
θ
i,τ +

K∑
j=1

γjTX
j
i,T + ηi,T ,

where Ri,T is stock i return from July of year T to June of year T + 1, βθi,τ is the loading from

regressions (3) with τ corresponding to May of year T , and Xi,T are K control variables all

measured prior to the end of June of year T . The timing of the variables measurement in the

regression follows the widely accepted convention as in Fama and French (1992).

We include in the Fama-MacBeth regressions commonly considered control variables such

as a firm’s market capitalization (ME), book-to-market ratio (BM) and return runup (RU)

(Fama and French (1992); Jegadeesh and Titman (1993)). We also consider other recently

documented determinants of the cross-section of stock returns, including the asset growth rate

(AG) of Cooper, Gulen, and Schill (2008) as well as the labor hiring (HN) and investment

rates (IK) of Bazdresch, Belo, and Lin (2012). We winsorize all independent variables cross-

sectionally at 1% and 99%.

Table 6 summarizes the results of Fama-MacBeth regressions. The coefficient on βθ is

negative and statistically significant in each considered specification, even after accounting for

other cross-sectional predictors of equity returns. These results confirm the negative relation

between loadings on the labor market tightness factor and future stock returns documented in

Table 3. The magnitude of the coefficient implies that for a one standard deviation increase

in βθ (0.49), subsequent annual returns decline by approximately 1.5%. Average loadings of

firms in the bottom and top deciles portfolios are 3.7 standard deviations apart, suggesting

that the difference in future stock returns of the two groups exceeds 5%, in line with the

results presented in Table 3.

The labor market tightness factor is highly correlated with its components and with

changes in industrial production (see Table 1). To ensure that our results are not driven

by either of these macro variables, we first estimate loadings βLFPR, βUnemp, βV ac, and βIP

from a two-factor regression of stock excess returns on market excess returns and log changes

in either labor force participation rate, unemployment rate, vacancy rate, or industrial pro-

duction, respectively. These loadings are estimated in the same manner as βθ in equation (3).
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We next run Fama-MacBeth regressions of annual stock returns on lagged loadings βLFPR,

βUnemp, βV ac, and βIP and on other control variables. Table A2 of the Appendix shows that

none of the considered loadings are robustly related to future equity returns, suggesting that

the relation between loadings on the labor market tightness factor and future stock returns

is not driven by one particular component of the labor market tightness or by changes in

industrial production.

F. Evidence from Two-Pass Regressions on Industry Portfolio Returns

Motivated by the empirical evidence of a strong negative relation between individual stocks’

loadings on the labor market tightness factor and future equity returns, we now turn to ex-

amining the pricing implications of labor market tightness cross-sectionally using 48 industry

portfolios.6 We perform the analysis in two stages. In the first stage, we regress monthly

excess returns of each industry i on market excess returns, labor market tightness factor, and

(depending on specification) on size, value, and momentum factors:

Ri,t−Rf,t = αi+βMi (RM,t−Rf,t) +βθi ϑt+βHML
i HMLt+βSMB

i SMBt+βUMD
i UMDt+εi,t,

In the second stage, we run a cross-sectional regression of industry returns on the loadings

estimated in the first stage. Table 7 summarizes the results of the second-stage regressions.

Each considered specification shows a significantly negative price of risk for the labor market

tightness factor, corroborating our previous findings of a strong negative relation between

loadings on the labor market tightness factor and future stock performance. We now turn to

understanding this empirical relation by formalizing a model of labor market frictions.

III. Model

The goal of this section is to provide an economic model which explains the empirical link

between labor market frictions and the cross section of equity returns. To this end, we solve

a partial equilibrium labor market model and study its implications for stock returns. For

6We obtain industry returns from Ken French’s website.
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tractability we do not model endogenous labor supply decisions from households, instead we

assume an exogenous pricing kernel.

A. Revenue

To focus on labor frictions, we assume that the only input to production is labor. We thus

abstract from capital accumulation and investment frictions. Firms generate revenue, Yi,t,

according to a decreasing returns to scale production function

Yi,t = ext+zi,tNα
i,t, (5)

where α denotes the labor share of production and Ni,t is the size of the firm’s workforce.

Both the aggregate productivity shock xt and the idiosyncratic productivity shocks zi,t follow

AR(1) processes

xt = ρxxt−1 + σxε
x
t , (6)

zi,t = ρzzi,t−1 + σzε
z
i,t, (7)

where εxt , εzi,t are standard normal i.i.d. innovations. Firm-specific shocks are independent

across firms, and from aggregate shock.

Firm’s labor capital is determined in a Kydland and Prescott (1982) time-to-build fashion.

Firms can expand the workforce by posting vacancies, Vi,t, to attract unemployed workers.

The key friction of search markets is that not all the posted vacancies are filled in a given

period. Instead, the probability q that vacancies are filled is endogenously determined in

equilibrium and depends on the congestion of the labor market denoted by θt. Once workers

and firms are randomly matched, workers either quit voluntarily at a constant rate of s or

are fired endogenously by the firm, denoted by Fi,t. Taken together, this implies the following

law of motion for the firm level employment size

Ni,t+1 = (1− s)Ni,t + q(θt)Vi,t − Fi,t. (8)

B. Labor Market Matching

Labor market tightness, θt, determines how easily vacant jobs can be filled. It is measured as

the ratio of aggregate vacancies, V̄t, to the aggregate unemployment level, Ūt, i.e., θt = V̄t/Ūt.
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The aggregate number of vacancies is simply the sum of all firm-level vacancies

V̄t =

∫
Vi,tdµt, (9)

where µt denotes the time-varying distribution of firms over the firm level state space (zi,t, Ni,t).

The mass of firms is normalized to one.

An important feature of our model is the size of the aggregate labor force. It is commonly

assumed in the literature a constant unit mass of workers (e.g. Diamond (1982), Merz (1995),

Shimer (2005)). We instead model the mass of the labor force as stochastic with unit mean.

The time varying size of the labor force captures the notion that the participation in the work

force is not constant over time. For instance, discouraged people stop searching for jobs or

the baby boomer generation enters the labor force.

The labor force is defined as the sum of employed and unemployed. Thus, the total number

of unemployed equals

Ūt = ept −
∫
Ni,tdµt, (10)

where ept is the size of labor force, and pt denotes an exogenous labor market participa-

tion shock. This shock follows an AR(1) process with autocorrelation ρp and i.i.d. normal

innovation εpt which is uncorrelated with aggregate productivity innovations εxt

pt = ρppt−1 + σpε
p
t . (11)

In the model, we treat the population as constant. The labor market participation shock

therefore corresponds to the ratio of labor force to population, i.e., the labor force participation

rate as reported by the Bureau of Labor Statistics.

Following den Haan, Ramey, and Watson (2000), vacancies are filled according to a con-

stant returns to scale matching function

M(Ūt, V̄t) =
ŪtV̄t

(Ū ξt + V̄ ξ
t )1/ξ

, (12)

and the probability for a vacancy to be filled per unit of time can be computed from

q(θt) =
M(Ūt, V̄t)

V̄t
= (1 + θξt )

−1/ξ. (13)
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This probability is decreasing in θ meaning that an increase in the relative scarcity of unem-

ployed workers relative to job vacancies makes it more difficult for a firm to fill a vacancy.

C. Nash Bargaining Wages

Wages are determined as the outcome of collective Nash bargaining between each firm and

its workforce. Workers have bargaining weight η ∈ (0, 1). If they decide not to work they

receive unemployment benefit b which represents the value of their outside option. Let κh be

the unit cost of vacancy posting. Workers are also rewarded the saving of hiring costs (κhθt)

that firms enjoy when a job position is filled. When markets are tighter, workers can thus

extract higher wages from the firm.

The firm with employment size Ni,t benefits from hiring the marginal worker through an

increase in output by the marginal product of labor, αext+zi,tNα−1
i,t . Similar to Stole and

Zwiebel (1996) on wage bargaining in multi-worker firms, collective Nash bargaining and

worker homogeneity imply that each worker receives the average marginal product of labor,

Yi,t/Ni,t. The overall wage rate is then given by7

wi,t = η(Yi,t/Ni,t + κhθt) + (1− η)b. (14)

D. Firm Value

We do not model the supply side of labor coming form households. This would require to

solve a full general equilibrium model. Instead, following Berk, Green, and Naik (1999) and

Lettau and Wachter (2011), we specify an exogenous pricing kernel

Mt+1 = e−rf,t
exp(−γxxt+1 − γppt+1)

Et[exp(−γxxt+1 − γppt+1)]
(15)

We assume that both the aggregate productivity shock xt and labor force participation shock

pt are priced with their respective market prices of risk γx and γp. The pricing kernel (15)

implies that rf,t is the log risk-free rate which follows an affine process as a function of the

aggregate shocks

rf,t = r̄f +B(xt + pt). (16)

7See the Appendix for a detailed derivation.
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implying an average risk-free rate of r̄f with variance B2(σ2p/(1− ρ2p) + σ2x/(1− ρ2x)).

The objective of the firm is to maximize its value Si,t either by posting vacancies Vi,t to

hire workers or by firing Fi,t employed workers to downsize. Both adjustments are costly at

a rate κh for hiring and κf for firing. The firm’s Bellman equation is

Si,t = max
Vi,t≥0,Fi,t≥0

{Di,t + Et[Mt+1Si,t+1]}, (17)

subject to equations (4) - (14) where Di,t denotes dividends given by

Di,t = Yi,t − wi,tNi,t − κhVi,t − κfFi,t. (18)

Notice that the firm’s problem is well-defined given labor market tightness θt and an expec-

tation about how it evolves. Given optimal firm value Si,t, stock returns are defined as

Ri,t+1 =
Si,t+1

Si,t −Di,t
. (19)

E. Equilibrium

Optimal firm employment policies depend on the dynamics of the labor market equilibrium.

More specifically, the probability q, of a vacancy being filled with a worker, is a function of

aggregate labor market tightness θ. Each individual firm is atomistic and takes labor market

tightness as exogenous.

Let Ωi,t = (Ni,t, zi,t, xt, pt, µt) be the vector of state variables and Γ be the law of motion

for the time-varying firm distribution µt,

µt+1 = Γ(µt, xt, pt). (20)

A given firm-level distribution µt, together with the aggregate shocks, implies a value for labor

market tightness θt. Equilibrium in the labor market implies that the labor market tightness

θt at each date is determined as a fixed point satisfying

θt =

∫
V (Ωi,t)dµt

ept −
∫
Ni,tdµt

. (21)

The recursive competitive equilibrium is characterized by: (i) labor market tightness θt,

(ii) optimal firm policies V (Ωi,t), F (Ωi,t), and firm value function S(Ωi,t), (iii) a law of motion

of firm distribution Γ, such that:
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• Optimality: Given the pricing kernel (15), Nash bargaining wage rate (14), and labor

market tightness θt, V (Ωi,t) and F (Ωi,t) solve the firm’s Bellman equation (17) where

S(Ωi,t) is its solution.

• Consistency: θt is consistent with the labor market equilibrium (21), and the law of

motion of firm distribution Γ is consistent with the optimal firm policies V (Ωi,t) and

F (Ωi,t).

F. Approximate Aggregation

The firm’s hiring and firing decisions trade off current costs and future benefits, which depend

on the aggregation and evolution of the firm distribution. Rather than solving for the high

dimensional firm distribution µt exactly, we follow Krusell and Smith (1998) and approximate

the firm level distribution with one moment. In search models, labor market tightness θt is a

sufficient statistic to solve the firm’s problem (17) and thus enters the state vector replacing

µt, i.e., Ωi,t = (Ni,t, zi,t, xt, pt, θt).

To approximate the law of motion Γ in equation (20), we assume a log-linear functional

form

log θt+1 = τ0 + τθ log θt + τx,0xt + τp,0pt + τx,1xt+1 + τp,1pt+1. (22)

Under rational expectations, the perceived labor market outcome equals the realized one at

each date of the recursive competitive equilibrium. At equilibrium, we can express the labor

market tightness factor ϑ as

ϑt+1 = τ0 + (τθ − 1) log θt + τx,0xt + τp,0pt + τx,1xt+1 + τp,1pt+1. (23)

Our application of Krusell and Smith (1998) differs from Zhang (2005) along several di-

mensions. First, θt+1 is a function of firm distribution at time t + 1 and hence is not in the

information set of date t. The forecasting rule (22) at time t does not enable firms to learn

θt+1 exactly, but rather to form a rational expectation about θt+1. In contrast, Zhang (2005)

assumes that firms can perfectly forecast next period’s industry price given time t states.

Second, at each period of the simulation, we impose labor market equilibrium by solving θt
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as the fixed point in Equation (21). Hence, there is no discrepancy between the forecasted

θt+1 and the realized θt+1. Third, the use of θt as the sufficient statistic of firm distribution

is consistent with the empirical findings that firms’ stock return sensitivity to changes in θt

is relevant for their valuation.

G. Expected Returns and the Labor Capital Asset Pricing Model

Given the pricing kernel (15), expected excess returns satisfy the Euler equation Et[Mt+1R
e
i,t+1] =

0. In order to derive a linear pricing relation, we apply a log linear approximation to the pric-

ing kernel implying8

Et[Rei,t+1] ≈ βxi,tλxt + βpi,tλ
p
t

where βxi,t and βpi,t are loadings on aggregate productivity and labor force participations shocks

and λxt and λpt are their respective factor risk premia.

Since aggregate productivity is not directly observable in the data, we also approximate

the return on the market as an affine function of the aggregate shocks

ReM,t+1 = ν0 + νθ log θt + νx,0xt + νp,0pt + νx,1xt+1 + νp,1pt+1. (24)

As a result, expected excess returns obey a two factor structure in the market return and

labor market tightness

Et[Rei,t+1] ≈ βMi,tλt,M + βθi,tλt,θ, (25)

where βMi,t and βθi,t are the loadings on the market return and log-changes of labor market

tightness and λt,M and λt,θ are the respective factor risk premia given by

λMt = νxλ
x
t + νpλ

p
t λθt = τxλ

x
t + τpλ

p
t

We call relation (25) the Labor Capital Asset Pricing Model.

IV. Quantitative Results

In this section, we describe our calibration procedure and the benchmark parameterization.

We first present the numerical results of the equilibrium forecasting rules. Given the equi-

librium dynamics for the labor market, we calculate theoretical loadings on labor market

8See the appendix for a detailed derivation.
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tightness and show that the model is consistent with the inverse relationship between load-

ings and expected future stock returns in the cross section. At the end of this section, we

discuss the main mechanism driving our model.

We solve the competitive equilibrium numerically in the discretized state space Ωi,t using

an iterative algorithm described in detail in Appendix C. Given the equilibrium forecasting

rule, firms make optimal employment policies. We simulate panels with 5000 firms for 5300

periods.

A. Calibration

This section describes how we calibrate the parameter values and simulate the model. We

adopt a monthly frequency because labor market and equity market data are available at that

frequency. Table (8) summarizes the parameter calibration of the benchmark model.

Since labor is the only input into production, the aggregate productivity shock process is

calibrated to the nonfarm business labor productivity index (output per hour) reported by

the BLS. We calculate the percentage deviations from the Hodrick-Prescott filtered trend for

quarterly labor productivity and fit an AR(1) process to estimate the persistence parameter

and conditional standard deviation. Then we transform the quarterly estimates to monthly

frequency according to Heer and Mauner (2011) to get ρx = 0.9830 and σx = 0.007. Regarding

the shock to the labor force participation, we take the time series of monthly labor force

participation rates from the BLS and normalize it to have unit mean. Then we fit an AR(1)

process to the log of the normalized time series and estimate the persistence ρp = 0.9967,

and conditional standard deviation σp = 0.0033. Notice that the correlation of the two shock

series estimated from data is only 0.019, which justifies our model assumption that the two

aggregate shocks are independent.

The average risk-free rate r̄f = 0.005 is set according to the monthly risk-free rate. The

affine structure coefficient B governs how the risk-free rate moves with the aggregate shocks.

It is chosen such that the risk-free rate is countercyclical and has an annual standard deviation

of 2.26%. The prices of risk of the aggregate shocks γx and γp are set to match the average

market excess return and the Sharpe ratio. We assume that the aggregate productivity shock
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x and labor force participation shock p both have positive price of risk. Berk, Green, and

Naik (1999) and Zhang (2005) provide a motivation for γx > 0 in an economy with only x

shocks.

The assumption of γp > 0 can be motivated as follows. In general equilibrium econ-

omy with a representative household, labor market participation is an endogenous outcome

determined as a consumption and leisure tradeoff where participation means a reduction in

leisure. Eckstein and Wolpin (1989) and Schirle (2008) show that endogenous variation in

participation can be linked to preference shocks. Under these assumption, the substitution

effect between consumption and leisure dominates in equilibrium, implying that consumption

and leisure are negatively correlated. This positive comovement between consumption and

participation indicates that, in a model with exogenous shocks to participation, these shocks

should display a positive price of risk.

The labor literature provides several empirical studies to calibrate the labor market param-

eters. According to Davis, Faberman, and Haltiwanger (2012), the monthly total separation

rate measured in the Job Openings and Labor Turnover Survey (JOLTS) is 0.034. In JOLTS,

each establishment reports employment hires, quits, and layoffs separately, which allows us

to differentiate between voluntary quits and involuntary layoffs. In both den Haan, Ramey,

and Watson (2000) and Davis, Faberman, and Haltiwanger (2012), the average level of quits

are twice that of layoffs. As such, we set the monthly exogenous quit rate s = 0.023.

Shimer (2005) measures the aggregate monthly job finding rate f(θ) = 0.45 and the

average vacancy filling rate q(θ) = 0.71. Given these estimates, the curvature of the matching

function has ξ = 1.28 coming from the steady state relation q =
(
(f/q)ξ + 1

)−1/ξ
.

The remaining parameters are chosen to match the simulated moments. Table (9) summa-

rizes the selected target moments from data and the simulated moments under the benchmark

calibration. The curvature of the production function α is set to match the average monthly

unemployment rate which is 5.7% in the data as reported by the BLS.

The level of unemployment benefit b relates to the average labor share of income measured

as total compensation of employees divided by output. Using data from The National Income
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and Product Accounts (NIPA), Gomme and Greenwood (1995) and Gomme and Rupert

(2007) report 0.717 for this moment.

The bargaining power of workers η determines the rigidity of wages. On the simulated

panel, for each firm we calculate the ratio of the standard deviation of log-changes of firm-

specific wage rate to the standard deviation of log-changes of firm output. Then we average

over all the firms to match the data moment as in Gourio (2007). We also calculate the

standard deviation of log-changes of aggregate after-tax profit to that of total output, and

match it to Gourio (2007).

The cost parameters κh and κf determine both the overall costs of adjusting the workforce

as well as the behavior of firm policies. Specifically, we determine the average total adjustment

costs to total output, which Yashiv (2011) empirically estimates to be are around 2% of output.

The proportional cost structure also implies the existence of firms that are neither posting

vacancies nor laying off workers. The average percentage of Compustat firms with zero net

annual employment growth rate during 1980-2010 is 7.04%. We refer to this as average

inaction fraction. On the simulated panel of firms, we average the monthly firm employment

growth rate across 12 months to get the annual average for each firm every year. Then we

compute the percentage of firms with absolute annual employment adjustment rate less than

1% to match the inaction fraction.9

The persistence and volatility of firm idiosyncratic shock process correspond to the cross-

sectional dispersion and persistence of firm-level employment growth rate. We obtain the

average dispersion of annual employment growth rates 0.25 by taking the cross-sectional

standard deviation of firm level employment growth rate for each year, and take the average

of the time series ranging 1980-2010 in Compustat. The corresponding moment is calculated

the same way in simulations to match the data. To measure the persistence and volatility of

labor adjustment, Davis, Haltiwanger, Jarmin, Miranda, Foote, and Nagypal (2006) adopt a

moving average formula and obtain the average volatility of annual employment growth rates

0.2 for Compustat firms. We follow their exact procedure on simulated data.

9We use the 1% to allow for numerical errors in the simulation, and measurement errors in the data.

20



B. Equilibrium Forecasting Rules

Table 10 shows the coefficient estimates for the equilibrium forecasting rule of labor market

tightness using the benchmark calibration. With this forecasting rule, we solve the model, and

simulate a panel of firms and estimate ex post the affine structure for market excess returns,

(24).

In the model, labor market tightness is autocorrelated, positively related to aggregate

productivity and negatively to the labor force participation. An increase in aggregate pro-

ductivity leads to more vacancy postings by firms because of an increase in the marginal

product of labor and a decrease in discount rates. More vacant positions means tighter labor

markets and a drop in matching probabilities. The direction of labor force participation shock

on labor market tightness is not obvious because both the numerator and the denominator

of labor market tightness (see Equation (21)) increase upon an increase in pt. Given our

calibration, the second channel dominates in the competitive labor market equilibrium and

θt decreases endogenously with the participation shock.

Figure 4 illustrates this endogenous link. In a model without a labor market equilibrium,

p shocks only enter θt through the denominator. When there is an increase in p from p0 to p1,

we move along the black solid curve from point A to B. Accounting for the firms’ endogenous

response, an increase in pt affects the pricing kernel and firms’ expectation about θt and thus

vacancy postings V (Ωi,t) increase. This endogenous response shifts the curve outward, and

we end up with the equilibrium at C. We also emphasize that when γp is large enough, the

endogenous increase in vacancies could be so strong that the curve shifts more outward to the

dashed red line with equilibrium D. Consequently, endogenous firm behavior also imposes a

constraint on our calibration.

The realized market excess return is mainly driven by the innovations of the two aggregate

shocks and not by lagged labor market tightness. When favorable aggregate shocks hit the

economy, prices increase and the realized market excess return is positive. As such, the

regression coefficients show that both νx,1 > 0 and νp,1 > 0. We use this information to

compute theoretical loadings on labor market tightness controlling for the market excess
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return.

C. Cross Section of Equity Returns

Following the empirical procedure in Section II, we calculate loadings βθi,t on the θ factor

of each stock i controlling for the market excess return. We emphasize that in the data,

we calculate the loadings βθi,t using a two-factor model of market excess return and labor

market tightness, see Equation (3). In the model, since we know the theoretical conditional

distribution of both the technology shock and the labor market participation shock, we can

calculate the theoretical loadings implied by the equilibrium law (24).

To assess to what extent our model can explain the empirically observed negative rela-

tionship between labor market tightness factor loadings and future stock returns, we use the

simulated data and sort portfolios into portfolios according to their factor loadings. For the

benchmark results, we use a monthly rebalancing procedure, sort the simulated 5000 firms

into ten portfolios, and calculate value weighted average returns for each portfolio. Table 11

compares the simulated return spread with the data.

In the model, the annualized average return difference between the low and heigh loading

portfolio is 4.3% relative to 6.0% in the data. Our results are robust with respect to portfolios

held and rebalanced at different horizons. Table 12 shows the simulated portfolio spread from

the benchmark model with portfolio rebalanced after one month, two months, four months, six

months, and 12 months. The portfolio spread decreases slightly as we increase the rebalancing

horizon, because as noise increases month after month, the predictability becomes weaker.

However, at a one year rebalancing horizon, the return spread is still significant.

What is economic mechanism underlying our model? Due to the proportional hiring and

firing costs, the optimal firm policy exhibits stylized (s, S) patterns in adjusting employment

size and thus regions of inactivity. Figure 5 illustrates the optimal firm policy. The black line

is the optimal policy when adjusting the workforce is costless. In the frictionless model, firms

always adjust to the target employment size independent of the current size. The red line is

the optimal policy in the benchmark model. It displays two kinks. In the region where the

optimal policy coincides with the 45 degree line, firms are inactive. In the inactivity region
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below the frictionless employment target, firms have too few workers but hiring is too costly.

In the inactivity region above the frictionless employment target, firms have too many workers

but firing is too costly.

Due to the time variation in the labor force participation, ideally, firms would like to hire

only when the labor market is not tight. Yet, the (s, S) firm policy arising from proportional

hiring and firing costs prevents some firms form doing so. When the economy is hit by an

adverse p shock, equilibrium θ goes up. Hiring becomes relatively more costly and thus less

attractive to firms. Some firms which are not in the inaction region have to incur relatively

higher cost in refilling their lost workers. Hence they end up with lower cash flows. When a

positive p shock realizes, firms wish to hire by taking advantage of the favorable labor market

condition. Some firms that have hired enough when p was low, are now in the constrained

inaction region. Firms with these characteristics have positively correlated cash flows with p

shocks and thus they are very sensitive to the labor market conditions. Consequently, they are

not hedged against the risk from labor market, are riskier and require higher expected return.

Empirically, these firms have low loadings on labor market tightness. Figure 6 illustrates the

inverse relationship between expected returns and loadings on labor market tightness in the

cross section.

Selecting firms based on loadings on labor market conditions is informative about future

returns whereas sorts based on hiring characteristics are not. The cost of hiring depends on

labor market tightness but the employment growth rate characteristic does not control for

this. This is why sorting firms by employment growth rates is not informative about future

returns.

Table 13 compares different model versions. The benchmark model generates the negative

relation between loadings on labor market tightness and future returns as in the data. The

portfolio spread in the data amounts to 6% annually. The benchmark model generates 4.34%,

which is a large portion of the empirical cross sectional return spread.

In Model 1, we do not solve for a labor market equilibrium. Instead, firms believe that

labor market tightness is constant in expectations, θt = θss. Without the equilibrium law
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of motion for θt, we calculate loadings on ϑ by rolling regressions on realized ϑ. In a model

without labor market equilibrium, the loadings on labor market tightness are not directly

linked to firm value but are still correlated with loadings on aggregate shocks. As a result,

the model fails short to explain the data.

Model 2 is only driven by aggregate productivity shocks and Model 3 only by labor force

participation shocks. In a setting with only aggregate productivity shocks (Model 2), the price

of θ risk is positive because labor market tightness and aggregate productivity are positively

related. As a result, we obtain a negative return difference for the low minus high portfolio, the

opposite of what we observe in the data. Contrary, in a model of only labor force participation

shocks (Model 3), we still see a negative price of risk for the θ factor in equilibrium.

V. Conclusion

This paper analyzes the cross sectional asset pricing implications of a risk factor originating

in the labor market. In the data, we first document a robust negative relation between

stock return loadings on changes in labor market tightness and future stock returns in the

cross section. We also show that a labor capital asset pricing model with heterogeneous firms

making dynamic employment decisions under labor search frictions can replicate the empirical

facts.

We add the following novel features to the standard labor search model: (1) Equilibrium

labor market tightness is determined endogenously as the total number of optimal vacancy

posted over the total unemployed and hence depends on the time-varying firm level distribu-

tion. (2) Rather than holding the the labor force constant, we model the mass of the labor

force as stochastic, which is motivated by the fluctuations in the labor force participation rate.

As an equilibrium outcome, labor market tightness is negatively related with participation

shocks. Consequently, firms with low labor market tightness loadings are very sensitive to

labor market conditions that originate from labor force participation shocks. These firms have

cash flows which are not hedged against adverse labor force shocks and hence require a high

expected stock returns.
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Appendix

A. Data

We describe the definitions of control variables in the Fama-MacBeth regressions of section

II.E. The regressions use stock returns from July of year t to June of year t+ 1 as dependent

variables. We list Compustat data items in parentheses where appropriate.

ME is the natural logarithm of market equity of the firm, calculated as the product of its

price per share and number shares outstanding at the end of June of calendar year t.

BM is the natural logarithm of the ratio of book equity to market equity for the fiscal

year ending in calendar year t− 1. Book equity is defined following Davis, Fama, and French

(2000) as stockholders’ book equity (SEQ) plus balance sheet deferred taxes (TXDB) plus

investment tax credit (ITCB) less the redemption value of preferred stock (PSTKRV). If the

redemption value of preferred stock is not available, we use its liquidation value (PSTKL).

If the stockholders’ equity value is not available in Compustat, we compute it as the sum of

the book value of common equity (CEQ) and the value of preferred stock. Finally, if these

items are not available, stockholders’ equity is measured as the difference between total assets

(AT) and total liabilities (LT). Market equity used to compute the book-to-market ratio is

the product of the price and the number of shares outstanding at the end of December of

calendar year t− 1.

RU is the stock return runup over twelve months ending in June of year t.

HN is the hiring rate, calculated following Bazdresch, Belo, and Lin (2012) as (Nt−1 −

Nt−2)/((Nt−1 + Nt−2)/2), where Nt is then number of employees (EMP) at the end of the

fiscal year ending in calendar year t.

AG is the asset growth rate, calculated following Cooper, Gulen, and Schill (2008) as

At−1/At−2− 1, where At is then value of total assets (AT) at the end of the fiscal year ending

in calendar year t.

IK is the investment rate, calculated following Bazdresch, Belo, and Lin (2012) as the ratio

of capital expenditure (CAPX) during the fiscal year ending in calendar year t− 1 divided by

fiscal year t− 2 capital stock (PPENT).
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B. Wage Process

In this section, we derive the Nash bargaining wage equation, following the logic in Kuehn,

Petrosky-Nadeau, and Zhang (2012). First we reduce the firms problem (17), with the law of

motion of employment size (8) to the following:

Si,t = max
Vi,t≥0

{Yi,t − wi,tNi,t − κhVi,t + Et [Mt+1Si,t+1] ,

subject to Ni,t+1 = (1− s)Ni,t + q(θt)Vi,t.

We justify the rational of reducing the endogenous firing Fi,t at the end of this section.

Denote the marginal value of a vacancy posting for a firm with state variables Ωi,t as SVi,t
.

Take the first order condition with respect to Ni,t+1, we get that at the optimum, firms set

the marginal value of vacancy posting equal to zero, i.e.

SVi,t
= − κh

q(θt)
+ λi,t + Et

[
Mt+1SNi,t+1

]
= 0. (26)

Denote the marginal value of an employment worker to a firm with state variable Ωi,t as

SNi,t
. Then by definition,

SNi,t
=
∂Yi,t
∂Ni,t

− wi,t + (1− s)Et
[
Mt+1SNi,t+1

]
. (27)

In order to perform Nash bargaining over the total surplus of a match, we need to specify

the marginal gains of an employed and an unemployed worker. Since we do not model the

household size, let’s assume a hypothetical representative family that makes decisions on the

extensive margin. φt is the marginal utility of the family that transforms money benefit

to utils. Denote JNi,t
as the marginal utility of an employed worker to the representative

family, and JVi,t
as the marginal value of an unemployed worker to the family. Given that an

employed worker receives wi,t for period t, and has probability s of being separated from the

job next period, we can write out the following recursive form for JNi,t
as

JNi,t

φt
= wi,t + Et

[
Mt+1

(
(1− s)

JNi,t+1

φt+1
+ s

JUi,t+1

φt+1

)]
(28)

Similarly, an unemployed worker receives the unemployment benefit b for the current

period, and has a probability f(θt) of finding a job next period. We can write the following
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recursive form for JUi,t
as

JUi,t

φt
= b+ Et

[
Mt+1

(
f(θt)

JNi,t+1

φt+1
+ (1− f(θt))

JUi,t+1

φt+1

)]
. (29)

The marginal worker and the firm bargain over the total surplus of a match Λt ≡
JNi,t

−JUi,t

φt
+ SNi,t

− SVi,t
. Given worker’s bargaining power η, Nash bargaining solves the

following problem

max
{wi,t}

(
JNi,t

− JUi,t

φt

)η
(SNi,t

− SVi,t
)1−η.

The Nash bargaining solution features

JNi,t
− JUi,t

φt
= η

(
JNi,t

− JUi,t

φt
+ SNi,t

− SVi,t

)
. (30)

Combining (26), (27), (28), (29),

Λt ≡
JNi,t

− JUi,t

φt
+ SNi,t

− SVi,t
= wi,t − b+ Et

[
Mt+1(1− s− f(θt))

JNi,t+1−JUi,t+1

φt+1

]
+
∂Yi,t
∂Ni,t

− wi,t + (1− s)Et[Mt+1SNi,t+1
],

plugging in (30), we further have

Λt =
∂Yi,t
∂Ni,t

− b+ (1− s)Et[Mt+1Λt+1]− ηf(θt)Et[Mt+1Λt+1]. (31)

Now rewrite (27) in terms of Λt

(1− η)Λt =
∂Yi,t
∂Ni,t

− wi,t + (1− s)(1− η)Et[Mt+1Λt+1]. (32)

Combining (31) and (32), wi,t = η ∂Yi,t

∂Ni,t
+ (1−η)b+ (1−η)ηf(θt)Et[Mt+1Λt+1] = η ∂Yi,t

∂Ni,t
+ (1−

η)b + ηf(θt)Et[Mt+1SNi,t+1
] = η

(
∂Yi,t

∂Ni,t
+ θtκh

)
+ (1 − η)b − ηf(θt)λi,t, where the last step is

obtained by realizing (27), and θt = f(θt)
q(θt)

.

Based on this wage equation that is obtained by Nash bargaining between the firm with

employment size Ni,t and the marginal worker, we now generalize it to collective Nash bar-

gaining 10 at period t, between the firm with employment size Ni,t, and its entire workforce,

10This idea originates from Stole and Zwiebel (1996). In their setting with multiple homogeneous workers
with non-constant marginal product, wage is allowed to be renegotiated every period conditional on the states.
If we assume individual bargaining rather than the collective setting, then the marginal impact of losing this
one marginal worker is not just revenue decreases by

∂Yi,t

∂Ni,t
, but also the wage rate of the rest of the workers

are renegotiated. In a discrete setting with n denoting the total number of workers, the marginal wage rate of
worker n, w(n) is a function of MPn and w(n− 1); and w(n− 1) is a function of MPn−1 and w(n− 2), and so
on. Substituting recursively, w(n) is a function of MPn, MPn−1, MPn−2, ... MP1, which boils down the idea
of collective bargaining between the firm and its workforce as a whole.
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visualized as a labor union of a firm. All the above derivations remain except that the marginal

product, or the contribution to the firm’s profit by the entire workforce of the firm is Yi,t =∫ Ni,t

0 αext+zi,tnα−1dn. Since workers are homogeneous in our setting, they divide equally their

bargaining outcome, implying an overall wage rate wi,t = η
(
Yi,t

Ni,t
+ κhθt

)
+(1−η)b−ηf(θt)λi,t.

Recall that λi,t is the Lagrange multiplier of the vacancy posting non-negativity constraints at

the margin. If marginally, a firm is not posting any vacancy, i.e. Vi,t = 0, and λi,t > 0, hence

wi,t < η
(
Yi,t

Ni,t
+ κhθt

)
+ (1 − η)b. However, since we assume collective bargaining between

the firm and its entire workforce, the vacancy posting decision at the margin when the entire

workforce wants to quit must be such that Vi,t > 0. Since Vi,tFi,t = 0, we hence justify that

the endogenous firing decision can be omitted when deriving the Nash bargaining wage rate.

Hence the overall wage rate is shown to be

wi,t = η

(
Yi,t
Ni,t

+ κhθt

)
+ (1− η)b.

C. The Labor CAPM

A log linear approximation of the pricing kernel (15) is given by

Mt+1

EtMt+1
= emt+1−ln(EtMt+1) ≈ 1 +mt+1 − ln(EtMt+1)

implying

Et[Rei,t+1] = −Covt

(
Mt+1

Et[Mt+1]
, Ri,t+1

)
≈ −Covt(mt+1, Rt+1)

= γxCovt(xt+1, Ri,t+1) + γpCovt(pt+1, Ri,t+1) (33)

= βxi,tλ
x
t + βpi,tλ

p
t

where risk loadings are given by

βxi,t =
Covt(xt+1, Ri,t+1)

Vart(xt+1)
βpi,t =

Covt(pt+1, Ri,t+1)

Vart(pt+1)

and factor risk premia are

λxt = γxVart(xt+1) λpt = γpVart(pt+1)
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We also approximate the return on the market as an affine function of the aggregate shocks

(24). Given (23) and (24), we can show that

Et[Rei,t+1] = γMCovt(RM,t+1, Ri,t+1) + γθCovt(ϑt+1, Ri,t+1)

= γMCovt(νxxt+1 + νppt+1, Ri,t+1) + γθCovt(τxxt+1 + τppt+1, Ri,t+1)

= (γMνx + γθτx)Covt(xt+1, Ri,t+1) + (γθτp + γMνp)Covt(pt+1, Ri,t+1). (34)

Thus, by matching coefficient of (33) and (34)

γx = γMνx + γθτx γp = γθτp + γMνp

Multivariate loadings with respect to labor market tightness and the market return satisfy

βθi,t =
νp

τxνp − νxτp
βxi,t −

νx
τxνp − νxτp

βpi,t

βMi,t =
−τp

τxνp − νxτp
βxi,t +

τx
τxνp − νxτp

βpi,t

Note, that these loadings are not univariate regression betas because the market return and

labor market tightness are correlated.

Given the two-factor specification (34), its beta representation yields the labor CAPM

(25) defined as

Et[Rei,t+1] = βMi,tλ
M
t + βθi,tλ

θ
t

where factor risk premia are

λMt = νxλ
x
t + νpλ

p
t λθt = τxλ

x
t + τpλ

p
t

D. Computational Algorithm

To solve the model numerically, we discretize the state space. All shocks (x, z, p) follow finite

states Markov chains according to Rouwenhorst (1995) with 5 states for x (nx = 5), 11 for z

(nz = 11) and 5 for p (np = 5). We create an evenly spaced grid of 50 points for employment

N in the interval [0.01, 5.0]. The lower and upper bounds of N are set such that the optimal

policies are not binding in the simulation11. The space of the labor market tightness θ needs

11In this heterogeneous firms model, as long as the aggregate employment rate is well-defined in [0, 1],
individual firm size is not bounded by 1 as in the case of representative firm models.
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to be transformed into a discrete space as well. We use an evenly spaced grid in the interval

[0.25, 1.25] with 30 points. The upper bound for θ is chosen such that the simulated paths

of equilibrium labor market tightness never step outside the bounds. The choice variable N ′

is a vector containing 5000 elements evenly spaced on the interval [0.01, 5.0]. We use linear

interpolation to obtain the value function off grid points. Our results are robust with more

numbers of the grid points, and non-evenly spaced grids, nonlinear interpolation methods.

The computation algorithm amounts to the following iterative procedure:

1. Initial guess: Take an initial guess for the coefficient vector τ in the law of motion

(22). Since the time series of θt is procyclical and highly persistent, we start from

τ = (−0.23; 0.5; 0; 0; 1; 0). At steady state, τ0 = (1− τθ) log θss = −0.23.

2. Optimization: Solve the firm’s optimization problem (17) given the forecasting rule

coefficients τ . For this step we use value function iteration. Specifically, the firm value

function solves

S(N, z, x, p, θ) = max{S(N, z, x, p, θ)h, S(N, z, x, p, θ)f}, (35)

where

S(N, z, x, p, θ)h = max
N ′≥(1−s)N

{(1− η)ex+zNα − [ηκhθ + (1− η)b]N−

κh
q(θ)

[N ′ − (1− s)N ] + E[M ′S(N ′, z′, x′, p′, θ′)|z,N, x, p, θ]}, (36)

and

S(N, z, x, p, θ)f = max
N ′≤(1−s)N

{(1− η)ex+zNα − [ηκhθ + (1− η)b]N−

κf [(1−)N −N ′] + E[M ′S(N ′, z′, x′, p′, θ′)|z,N, x, p, θ]}. (37)

3. Simulation: Use the firm’s optimal employment policies V (N, z, x, p, θ) and F (N, z, x, p, θ)

to simulate a panel of N = 5000 firms over T = 5300 periods. Here we emphasize that

at each period, we impose labor market equilibrium by solving θt as the fixed point in

Equation (21). In this fashion, we obtain a time series of realized θt.
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4. Update coefficients: we truncate the initial 300 months as burn-in periods, and use the

stationary region of the simulated data to estimate the vector τ by OLS. Update the

forecasting coefficients, and restart from the optimization step. Continue the outer loop

iteration until the coefficients converge and the goodness-of-fit measures are satisfactory.
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Figure 1. Labor Market Tightness and Its Components. This figure plots the monthly
time series of the vacancy index (normalized to have average of one), the labor force partici-
pation rate, the unemployment rate, and the labor market tightness.
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Figure 2. Loadings on the Labor Market Tightness Factor. This figure plots time
series statistics of the loadings of common stocks on the labor market tightness factor.
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Figure 3. Returns of the Low - High Portfolio. This figure plots in Panel A the log
cumulative return of the portfolio that longs the decile of stocks with the lowest exposure to
the labor market tightness factor and shorts the decile of stocks with the highest loadings and
shows in Panel B the monthly returns of this portfolio.
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Figure 4. Equilibrium Labor Market Tightness vs. Participation Shock This figure
illustrates the endogenous relationship between the equilibrium labor market tightness and the
participation shock. From p0 to p1, without endogenous response from firm vacancy posting,
equilibrium θ goes from A to B. Point C indicates the equilibrium endogenous response of θ
when accounting for the endogenous firm vacancy postings. D illustrates an overreact of the
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Figure 5. Firm Optimal Employment Policy with Search Frictions This figure
demonstrates the firm optimal labor adjustment policy under search frictions. Take an in-
dividual firm with states (x, p, θ, z), point N∗ is the optimal future employment level in a
frictionless environment, and the solid red curve N∗ depicts optimal policy with search fric-
tions. The region Hiring constraint are firms who wish to, but cannot refill their lost workers.
The region Excess labor are firms who wish to, but cannot discharge its workforce. The sum
of the two regions are referred to as the Inaction region, in which firms do not adjust the
employee size freely.

39



−1 −0.5 0 0.5 1
0.033

0.034

0.035

0.036

0.037

0.038

0.039
ER vs. β ϑ

β ϑ

E
R

Figure 6. Expected Future Return vs. Loading on ϑ: on the Grid This figure shows
at equilibrium, the inverse cross-sectional relationship between the expected future equity
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on the grid, and show the cross-sectional scatter plot, conditional on two randomly picked
aggregate states (x, p, θ).
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Table 1. Summary Statistics

Standard Correlations

Mean Deviation ϑ VAC UNEMP LFPR IP CPI DY TB TS

ϑ -0.0030 0.0567
VAC -0.0011 0.0346 0.8232
UNEMP 0.0017 0.0340 -0.8249 -0.3623
LFPR 0.0002 0.0030 -0.1166 0.0398 0.1474
IP 0.0024 0.0091 0.5590 0.4504 -0.4798 0.0475
CPI 0.0031 0.0032 -0.0662 -0.0445 0.0611 0.0509 -0.0736
DY 0.0324 0.0113 -0.0672 -0.0020 0.1117 0.0650 -0.0970 0.3359
TB 0.0041 0.0024 -0.0744 -0.0810 0.0373 0.0384 -0.0836 0.5295 0.4757
TS 0.0140 0.0120 0.0853 0.0983 -0.0432 -0.0244 0.0309 -0.2864 -0.0725 -0.3487
DS 0.0098 0.0046 -0.2579 -0.2056 0.2225 -0.0310 -0.2877 0.1146 0.3481 0.3573 0.3004

Notes: This table reports summary statistics for the monthly labor market tightness, change in the vacancy
index, change in the unemployment rate, change in the labor force participation rate, change in the industrial
production, change in the consumer price index, dividend yield, T-bill rate, term spread, and default spread
(ϑ, VAC, UNEMP, LFPR, IP, CPI, DY, TB, TS, and DS, respectively) calculated for the 1954-2009 period.
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Table 2. Characteristics of βθ Decile Portfolios

Decile βθ βM BM ME RU AG IK HN Div Div Vol

Low βθ -0.8474 1.3672 0.8816 4.7924 0.1721 0.1419 0.3358 0.0676 0.0235 0.0208
2 -0.4054 1.1752 0.9099 5.7850 0.1511 0.1436 0.3060 0.0828 0.0325 0.0176
3 -0.2373 1.0915 0.9048 6.0958 0.1293 0.1190 0.2815 0.0593 0.0357 0.0163
4 -0.1212 1.0272 0.9155 6.3182 0.1370 0.1218 0.2773 0.0716 0.0373 0.0155
5 -0.0241 1.0184 0.9325 6.2076 0.1363 0.1226 0.2669 0.0556 0.0368 0.0150
6 0.0701 1.0262 0.9326 6.0468 0.1320 0.1238 0.2709 0.0556 0.0347 0.0150
7 0.1737 1.0602 0.9336 5.8670 0.1335 0.1219 0.2810 0.0641 0.0339 0.0152
8 0.3018 1.1156 0.9358 5.5260 0.1363 0.1262 0.2943 0.0638 0.0311 0.0146
9 0.4928 1.1988 0.9144 4.9682 0.1351 0.1339 0.3075 0.0801 0.0255 0.0144
High βθ 0.9944 1.3812 0.8721 3.9462 0.1517 0.1432 0.3497 0.0805 0.0113 0.0241

Notes: This table reports average characteristics for the ten portfolios of stocks sorted on the basis of
their loadings on the labor market tightness factor, βθ. βM is market beta; BM is the book-to-market
ratio; ME is the market equity decile; RU is the 12-month return runup; AG, IK, and HN are the asset
growth, investment, and new hiring rates, respectively; Div is dividend yield. Mean characteristics
are calculated in each annual cross-section and then averaged. Dividend volatility reported in the last
column is computed at the portfolio level as the volatility of the difference of portfolio returns with
and without dividends.
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Table 3. Future Performance and Risk Loadings of Portfolios
Sorted by Loadings on Labor Market Tightness Factor

Raw Alphas Loadings from 4-factor regressions

Decile Return Market 3-factor 4-factor RM HML SMB UMD

Low βθ 1.14 0.07 0.09 0.06 1.16 -0.11 0.37 0.03
2 1.09 0.13 0.12 0.13 1.04 0.02 -0.02 -0.01
3 1.05 0.13 0.10 0.13 0.98 0.06 -0.08 -0.03
4 0.99 0.09 0.06 0.07 0.95 0.09 -0.10 -0.01
5 0.99 0.10 0.03 0.03 0.97 0.15 -0.11 0.00
6 0.97 0.07 0.04 0.02 0.97 0.09 -0.10 0.02
7 0.96 0.05 0.05 0.05 0.97 0.02 -0.08 0.00
8 0.92 -0.02 -0.02 0.02 1.00 -0.03 0.01 -0.03
9 0.82 -0.20 -0.17 -0.13 1.10 -0.12 0.17 -0.04
High βθ 0.64 -0.48 -0.44 -0.37 1.17 -0.23 0.62 -0.07

Low-High 0.50 0.55 0.53 0.43 -0.01 0.12 -0.25 0.10
t-statistic [3.60] [3.95] [3.86] [3.06] [-0.32] [2.29] [-5.32] [2.98]

Notes: This table reports average raw returns and alphas, in percent per month, and loadings
from the four-factor model regressions for the ten portfolios of stocks sorted on the basis of
their loadings on the labor market tightness factor, as well as for the portfolio that is long
the low decile and short the high group. The bottom row gives t-statistics for the low-high
portfolio. Firms are assigned into deciles at the end of every month τ and are held without
rebalancing for 12 month beginning in month τ + 2. The sample period is 1954-2009.
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Table 4. Summary Statistics of Factor Returns

Standard Sharpe Correlations

Mean Deviation Ratio LMT RM HML SMB

LMT 0.4985 3.5864 0.1390
RM 0.5315 4.3876 0.1211 -0.1118
HML 0.4052 2.7914 0.1452 0.1233 -0.2899
SMB 0.2033 2.9961 0.0679 -0.2369 0.2724 -0.2265
UMD 0.7497 4.1139 0.1822 0.1065 -0.1314 -0.1797 -0.0317

Notes: This table reports summary statistics for the difference in returns on stocks with
low and high loadings βθ on the labor market tightness (LMT) as well as for market excess
return (RM), and value (HML), size (SMB), and momentum (UMD) factors. All data are
monthly. Means and standard deviations are in percent. The sample period is 1954-2009.
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Table 5. Future Performance and Risk Loadings of Portfolios
Sorted by Loadings on Labor Market Tightness Factor: Robustness

Raw Alphas Loadings from 4-factor regressions

Return Market 3-factor 4-factor RM HML SMB UMD

A. Non-overlapping portfolios
Low-High 0.62 0.69 0.58 0.55 -0.02 0.27 -0.26 0.04
t-statistic [3.75] [4.12] [3.55] [3.23] [-0.39] [4.36] [-4.56] [0.88]

B. One-month holding
Low-High 0.59 0.67 0.66 0.51 -0.05 0.14 -0.28 0.15
t-statistic [3.44] [3.89] [3.82] [2.91] [-1.17] [2.12] [-4.80] [3.47]

C. Two-months waiting
Low-High 0.49 0.54 0.52 0.42 -0.01 0.11 -0.25 0.10
t-statistic [3.56] [3.89] [3.82] [3.02] [-0.26] [2.16] [-5.32] [2.96]

D. Excluding micro caps
Low-High 0.48 0.51 0.50 0.36 -0.02 0.08 0.00 0.13
t-statistic [3.96] [4.17] [3.96] [2.84] [-0.76] [1.73] [0.10] [4.40]

E. Alternative definition of ϑ
Low-High 0.42 0.46 0.44 0.42 -0.01 0.10 -0.19 0.02
t-statistic [3.08] [3.31] [3.16] [2.94] [-0.38] [1.86] [-4.00] [0.53]

Notes: This table reports average raw returns and alphas, in percent per month, loadings,
and corresponding t-statistics from the four-factor model regressions for the portfolio that is
long the decile of stocks with low loadings on the labor market tightness factor and short the
decile with high loadings. In Panel A, firms are assigned into deciles at the end of May of
year t and are held from July of year t to June of year t+ 1. In Panel B, firms are assigned
into deciles at the end of every month τ and are held for one month, τ + 2. In Panel C,
firms are assigned into deciles at the end of every month τ and are held without rebalancing
for 12 month beginning in month τ + 3. In Panel D, firms below 20th percentile of NYSE
market capitalization are excluded from the sample, and the remaining firms are assigned
into deciles at the end of every month τ and are held without rebalancing for 12 month
beginning in month τ + 2. In Panel E, labor market tightness factor is defined as residual
from a time series regression of ϑ defined in equation (2) on change in industrial production,
change in consumer price index, dividend yield, T-bill rate, term spread, and default spread.
In all panels, the sample period is 1954-2009.
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Table 6. Fama-MacBeth Regressions of Annual Stock Returns on
Loadings on Labor Market Tightness Factor and Other Variables

Reg Const βθ βM ME BM RU HN IK AG

(1) 0.388 -0.025 -0.012 -0.019
[4.28] [-2.13] [-0.77] [-2.79]

(2) 0.326 -0.025 -0.001 -0.014 0.038
[3.63] [-2.09] [-0.04] [-1.97] [4.07]

(3) 0.336 -0.029 0.004 -0.016 0.037 0.047
[3.75] [-2.50] [0.28] [-2.27] [4.19] [2.83]

(4) 0.372 -0.036 -0.001 -0.019 0.028 0.062 -0.059
[4.13] [-2.86] [-0.08] [-2.81] [2.36] [2.94] [-4.14]

(5) 0.386 -0.038 0.000 -0.019 0.026 0.061 -0.024
[4.02] [-2.88] [0.02] [-2.74] [2.32] [2.77] [-1.92]

(6) 0.363 -0.029 0.003 -0.017 0.025 0.058 -0.070
[3.90] [-2.37] [0.22] [-2.40] [2.46] [2.94] [-3.43]

(7) 0.379 -0.035 0.001 -0.019 0.023 0.061 0.001 -0.085
[4.23] [-2.76] [0.06] [-2.87] [2.06] [2.90] [0.04] [-5.55]

(8) 0.414 -0.039 -0.011 -0.021 0.019 0.057 0.038 0.060 -0.170
[4.15] [-3.03] [-0.53] [-2.96] [1.60] [2.47] [0.89] [1.72] [-2.84]

Notes: This table reports the results of annual Fama-MacBeth regressions. Stock returns
from month July of year t to June of year t + 1 are regressed on βθ, loading on the labor
market tightness factor measured as of the end of May of year t; βM , market beta measured
as of the same time; ME, log of market equity measured as of the end of June of year t; BM,
log of the ratio of book equity to market equity measured following Davis, Fama, and French
(2000); RU, 12-month stock return ending in June of year t; and HN, IK, and AG are new
hiring, investment, and asset growth rates, respectively, defined as in Bazdresch, Belo, and
Lin (2012). Reported are average coefficients and the corresponding t-statistics. The sample
period is 1960-2009. Details of variable definitions are in the Appendix.
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Table 7. Two-Pass Regressions, Industry Portfolios

Reg RM ϑ HML SMB UMD R2

(1) 0.000 -0.020
[-0.26]

(2) 0.001 -0.021 0.107
[1.05] [-2.75]

(3) 0.001 -0.002 -0.001 0.102
[0.47] [-2.18] [-1.63]

(4) 0.002 -0.017 -0.002 -0.001 0.169
[1.38] [-2.15] [-2.46] [-1.27]

(5) 0.002 -0.001 -0.001 0.005 0.145
[1.37] [-1.73] [-1.80] [1.97]

(6) 0.004 -0.016 -0.001 -0.001 0.003 0.211
[2.12] [-2.06] [-2.00] [-1.45] [1.30]

Notes: This table reports results of two-pass regressions on 48 value-
weighted industry portfolios. In the first pass, excess returns of each portfo-
lio are regressed on factors shown in column headings. Next, average excess
returns of the industry portfolios are regressed on the loadings from the
first-stage regressions. Shown are coefficients, corresponding t-statistics,
and adjusted R2 values from the second-stage regressions. Sample period
is 1954-2009.
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Table 8. Benchmark Parameter Calibration

Parameter Notation Value

Aggregate shock and preference

Persistence of aggregate productivity shock x ρx 0.9830
Conditional standard deviation of x σx 0.0077
Persistence of participation shock p ρp 0.9967
Conditional standard deviation of p σp 0.0033
Average risk-free rate r̄f 0.005
Affine coefficient of rf,t B -0.20
Price of risk on shock x γx 24
Price of risk on shock p γp 28

Labor market parameters

Average monthly job quit rate s 0.023
Matching function elasticity ξ 1.28
Returns to scale of labor α 0.65
Bargaining power of worker η 0.3
Flow cost of vacancy posting κh 0.60
Flow cost of firing κf 0.85
Benefit of being unemployed b 0.49

Idiosyncratic shock process

Persistence of idiosyncratic productivity shock z ρz 0.96
Conditional standard deviation of z σz 0.08

Notes: This table lists the parameter values in the benchmark calibration. The
model is based on a monthly frequency. We calibrate the aggregate productivity
shock to nonfarm business labor productivity (output per hour) index reported by
BLS. We estimate ρx and σx by fitting an AR(1) process for the percentage deviation
from trend of the quarterly series of labor productivity, and transforming to monthly
frequency according to Heer and Mauner (2011). Similarly, we normalize the labor
force participation rate and fit AR(1) process to estimate ρp and σp. We set rf , and
B to match the time series mean and standard deviation of risk free rate. γx, γp
are set to match the average market excess return and Sharpe ratio. We base the
monthly job quit rate on JOLT, as in den Haan, Ramey, and Watson (2000) and
Davis, Faberman, and Haltiwanger (2012). Matching parameter ξ is derived from
the steady state value of job finding rate 0.45 and vacancy filling rate 0.71, following
Shimer (2005). η, κh, κf , α, b, ρz and σz are calibrated jointly to match the model
simulated moments with a set of empirical moments in Table 9.
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Table 9. Aggregate and Firm-specific Target Moments

Moments Data Model

Unemployment rate 0.057 0.051
Labor share of income 0.717 0.731
Stdev of real wage growth relative to output growth 0.483 0.382
Stdev of dividend growth relative to output growth 3.630 3.006
Total adjustment costs to total output 0.020 0.019
Annual inaction fraction 0.070 0.063
Dispersion of annual employment growth rates 0.250 0.261
Volatility of annual employment growth rates 0.200 0.180

Notes: This table summarizes the empirical aggregate and firm-specific moments
used to calibrate model parameters (η, κh, κf , α, b, ρz, σz). The model moments are
generated using the benchmark calibration in Table 8, and by a simulation of 100
artificial panels each with 5,000 firms and 5300 months, with the initial 300 months
serving as burn-in periods. The average unemployment rate is from BLS. The ag-
gregate labor share of income equals total wage compensation of the economy over
total output. Gourio (2007) reports the standard deviation of log-changes of firm-
specific wage rate relative to output is 0.483, and that for aggregate after-tax profit
is 3.63. Total adjustment costs of a year equal the sum of vacancy posing costs and
firing costs for all firms. The average annual inaction fraction accounts the average
percentage of Compustat firms with zero net annual employment growth rate during
1980 - 2010. We obtain the average dispersion of annual employment growth rates
by taking the cross-sectional standard deviation of Compustat firm for each year,
then take the time series average. We follow the moving average formula in Davis,
Haltiwanger, Jarmin and Miranda (2006) to get the employment-weighted average
volatility of annual employment growth rates.
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Table 10. Forecasting Regressions

θt+1 ReM,t+1

τ0 -0.05 ν0 0.01
τθ 0.81 νθ -0.01
τx,0 -3.07 νx,0 -6.02
τp,0 3.83 νp,0 -11.16
τx,1 3.76 νx,1 6.01
τp,1 -3.94 νp,1 11.04

R2 98.18% R2 94.71%

Notes: This table reports the estimates of
the equilibrium forecasting rule for labor mar-
ket tightness specified in (22), as well as the
affine function of market excess return in (24).
Goodness-of-fit measures R2 are also reported.
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Table 11. Portfolio in Benchmark Model vs. Data
Sorted by Loadings on Labor Market Tightness Factor

Data Benchmark Model

Decile βθ Ret HN βθ Ret HN

Low -0.85 13.68 6.76 -0.13 13.64 1.59
2 -0.41 13.08 8.28 -0.06 13.06 2.26
3 -0.24 12.60 5.93 -0.01 12.52 12.47
4 -0.12 11.88 7.16 0.01 12.27 -2.90
5 -0.02 11.88 5.56 0.04 11.71 22.67
6 0.07 11.64 5.56 0.07 11.78 -8.97
7 0.17 11.52 6.41 0.13 11.09 16.27
8 0.30 11.04 6.38 0.15 10.95 -2.10
9 0.49 9.84 8.01 0.20 10.28 8.36
High 0.99 7.68 8.05 0.27 9.29 -4.45

Low-High 1.84 6.00 0.40 4.34

Notes: This table compares our benchmark model performance with data. All numbers
are expressed in percentage terms. Return refers to future portfolio equity return. HN
stands for employment growth rate. Under benchmark calibration, we simulate panels of
firms and compute their theoretical loadings on the labor market tightness factor. We sort
portfolios according to their loadings and calculate the realized and expected future annualized
equity returns and annualized employment growth rate. The benchmark model produces
monotonically decreasing portfolio returns and non-monotonic employment growth rate, which
resembles the data. Note that our model does not consider economic growth, hence firms do
not necessarily experience positive employment growth rate on average as in data.
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Table 12. Simulated Portfolio Returns
Sorted by Loadings on ϑ Factor, different rebalancing horizon

Decile 1 month 2 months 4 months 6 months 12 months

Low 13.64 13.57 13.49 13.41 13.22
2 13.06 13.00 12.94 12.88 12.74
3 12.52 12.55 12.51 12.46 12.35
4 12.27 12.36 12.32 12.28 12.19
5 11.71 11.85 11.82 11.80 11.75
6 11.78 11.79 11.78 11.76 11.72
7 11.09 11.21 11.21 11.21 11.22
8 11.95 11.02 11.03 11.04 11.07
9 10.28 10.39 10.42 10.46 10.55
High 9.29 9.48 9.55 9.62 9.82

Low-High 4.34 4.09 3.94 3.79 3.40

Notes: This table reports the simulated return spread among portfolios sorted by the ϑ factor
loadings from the benchmark model, with portfolios rebalanced after one month, two months,
four months, six months, and 12 months. As we increase the rebalancing horizon, the cross-
section portfolio spread decreases slightly and monotonically. This is because the longer the
portfolio holding horizon, the more noise we accumulate, hence the weaker the predicative
power will be for future returns. However, we still get a significant and sizable spread even
at a one year rebalancing horizon, indicating the robustness of our model prediction.
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Table 13. Portfolio Return Model Comparison
Sorted by Loadings on Labor Market Tightness Factor

Decile Data Benchmark Model 1 Model 2 Model 3

Low 13.68 13.64 12.63 10.40 12.51
2 13.08 13.06 12.11 11.06 12.06
3 12.60 12.52 12.15 11.50 11.70
4 11.88 12.27 11.46 11.64 11.53
5 11.88 11.71 12.02 12.04 11.12
6 11.64 11.78 11.20 12.08 11.05
7 11.52 11.09 12.05 12.44 10.58
8 11.04 10.95 11.09 12.57 10.40
9 9.84 10.28 11.45 12.89 9.87
High 7.68 9.29 11.39 13.27 9.06

Low-High 6.00 4.34 1.25 -2.88 3.45

Notes: This table compares the model simulated expected future equity returns of 10 portfolios
sorted by the loadings on labor market tightness factor with their empirical counterpart.
Benchmark stands for the benchmark labor capital asset pricing model that we propose in
this paper. Model 1 is an economy with the same two aggregate shocks, but no equilibrium
mechanism in the labor market. Model 2 is obtained by turning off the participation shock
in our benchmark model, i.e. is a one-factor labor market equilibrium model with aggregate
technology shock only. Model 3 is obtained by turning off the aggregate technology shock in
the benchmark model, i.e. is a one-factor labor market equilibrium model with participation
shock only. Note that in Model 2 and Model 3, loadings on the labor market tightness factor
are univariate loadings without controlling for market excess return.
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Table A1. Future Performance of Portfolios Sorted by
Loadings on Market and Labor Market Tightness Factors

Low βM 2 3 4 High βM Low-High

A. Independent sorts
Low βθ 0.64 0.62 0.54 0.50 0.34 0.29 [1.58]
2 0.62 0.55 0.55 0.44 0.23 0.39 [2.30]
3 0.58 0.58 0.52 0.35 0.15 0.43 [2.54]
4 0.63 0.53 0.43 0.23 0.22 0.41 [2.39]
High βθ 0.28 0.33 0.21 0.10 0.03 0.25 [1.32]
Low-High 0.36 0.29 0.34 0.40 0.31
t-statistic [2.33] [2.35] [2.62] [2.92] [2.47]

B. Conditional sorts: first on βθ, then on βM

Low βθ 0.62 0.62 0.47 0.43 0.34 0.28 [1.45]
2 0.63 0.58 0.57 0.48 0.33 0.29 [1.89]
3 0.60 0.59 0.51 0.43 0.21 0.39 [2.59]
4 0.66 0.54 0.40 0.28 0.17 0.49 [3.04]
High βθ 0.31 0.31 0.05 0.06 0.01 0.30 [1.50]
Low-High 0.31 0.31 0.42 0.37 0.33
t-statistic [2.07] [2.47] [3.12] [2.74] [2.38]

C. Conditional sorts: first on βM , then βθ

Low βθ 0.70 0.61 0.54 0.52 0.32 0.38 [1.98]
2 0.62 0.54 0.56 0.42 0.21 0.41 [2.36]
3 0.55 0.57 0.50 0.35 0.20 0.35 [2.04]
4 0.63 0.54 0.46 0.20 0.13 0.50 [2.84]
High βθ 0.33 0.39 0.26 0.10 -0.10 0.43 [2.05]
Low-High 0.37 0.22 0.28 0.42 0.42
t-statistic [2.62] [2.02] [2.43] [3.15] [2.85]

Notes: This table reports average raw returns, in percent per month, for the quintiles portfo-
lios of stocks sorted on the basis of their loadings on the labor market tightness and market
factors, as well as for the portfolio that is long the low quintile and short the high quintile.
Firms are assigned into groups at the end of every month τ and are held without rebalancing
for 12 months beginning in month τ+2. The bottom row and the last columns give t-statistics
for the low-high portfolios. The sample period is 1954-2009.
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Table A2. Fama-MacBeth Regressions of Annual Stock Returns on Loadings
on Components of Labor Market Tightness Factor and Other Variables

Reg Const βM βLFPR βUnemp βV ac βIP Controls

(1) 0.163 -0.011 0.000 No
[5.91] [-0.75] [0.16]

(2) 0.162 -0.012 0.009 No
[5.93] [-0.78] [1.12]

(3) 0.163 -0.010 -0.006 No
[5.93] [-0.65] [-0.76]

(4) 0.159 -0.008 -0.002 No
[5.91] [-0.54] [-1.02]

(5) 0.160 -0.011 0.000 0.013 0.004 No
[5.89] [-0.76] [-0.04] [1.44] [0.56]

(6) 0.156 -0.009 0.000 0.010 0.007 -0.002 No
[5.88] [-0.62] [0.82] [1.12] [0.81] [-1.00]

(7) 0.429 -0.034 0.005 Yes
[3.64] [-0.97] [1.18]

(8) 0.401 -0.013 0.018 Yes
[4.01] [-0.62] [2.32]

(9) 0.418 -0.005 -0.023 Yes
[4.13] [-0.31] [-2.82]

(10) 0.411 -0.021 -0.004 Yes
[3.97] [-0.74] [-1.32]

(11) 0.431 -0.012 0.005 0.004 -0.022 Yes
[3.49] [-0.62] [1.18] [0.28] [-1.30]

(12) 0.307 -0.023 0.008 0.000 0.026 0.016 Yes
[3.41] [-0.85] [1.15] [0.01] [0.79] [0.98]

Notes: This table reports the results of annual Fama-MacBeth regressions. Stock returns from
month July of year t to June of year t+ 1 are regressed on βM , market beta measured using three
years of data ending in end of May of year t; βLFPR, βUnemp, βV ac, and βIP , loadings from two-
factor regressions of stock excess returns on market excess returns and log changes in either labor
force participation rate, unemployment rate, vacancy rate, or industrial production, respectively,
computed over the same period as βM . Controls include log of market equity measured as of the end
of June of year t; log of the ratio of book equity to market equity measured following Davis, Fama,
and French (2000); 12-month stock return ending in June of year t; and new hiring, investment, and
asset growth rates, defined as in Bazdresch, Belo, and Lin (2012). Reported are average coefficients
and the corresponding t-statistics. The sample period is 1960-2009. Details of variable definitions
are in the Appendix.
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