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ABSTRACT

I measure the effects of capital flow contagion in financial markets by ana-
lyzing portfolio managers linked through interconnected asset holdings. My
novel, network-based specification provides estimates of shocks to common
predictor variables 50-75% higher than existing estimates of manager’s cap-
ital flows which ignore network relationships. This additional impact arises
because my network specification includes the effect of spillover onto imme-
diate neighbors and beyond, leading to feedback loops. My findings seem
to result from crowded trades (popular, short-term investment strategies)
since network connections do not show strong persistence and relatively
small changes in asset allocation toward more concentrated positions may
increase interconnection considerably.
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Since the beginning of the recent financial crisis, the concept of too-interconnected-

to-fail has grown in importance, leading regulators to identify portfolio overlaps

of financial intermediaries as a potential source of systemic risk.1 Practitioners

have also shown concern, suggesting that “. . . there may be more crowded trades

than most investors realize. If investors exit at the same time, market movements

could be chaotic.”2 Among academics, Stein (2009) identifies “crowding”, or sim-

ilar portfolios among sophisticated investors, as a risk in financial markets and

Brunnermeier and Sannikov (2011) identify portfolio overlaps as a destabilizing

mechanism in financial markets.

In this paper, I show that crowded trades may induce capital flow contagion

among these interconnected portfolio managers. Capital flow contagion occurs

when the withdrawals and forced sales experienced by one investment manager

provoke capital outflows and asset sales from other funds with similar portfolio

holdings through the depressed prices of commonly held assets (Brunnermeier and

Pedersen (2009)).3 However, my approach accounts for broader network propaga-

tion effects and feedback loops, not just pairwise connections. To do this, I employ

a novel instrumental variables specification to estimate contemporaneous capital

flow contagion effects in steady-state across the network.

Compared to the analysis of disconnected, independent portfolio managers

common in the literature, I find that coefficient estimates of common predictors of

fund flows increase by 50-75% when network relationships are taken into account.4

1See speech by The Bank of England’s Executive Director for Financial Stability Andrew
Haldane at http://www.bankofengland.co.uk/publications/speeches/2010/speech433.pdf

2Bank of America-Merrill Lynch report, http://ftalphaville.ft.com/blog/2011/06/01/
581676/the-calm-before-the-volatility-storm/ as quoted in the Financial Times, 1 June 2011.

3Brunnermeier and Pedersen (2009) model withdrawals and forced sales as a “market liquid-
ity/funding liquidity” spiral, my extension is to consider what happens to other investors holding
the assets being sold.

4Existing literature predicting fund flows assumes each fund to be independent (e.g. Sirri
and Tufano (1998)). The common predictors of fund flows I consider are past returns, fund
category average flows, and cash holdings.
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This increase is due to two contagion processes I am able to incorporate with the

full network of interconnections. First, “own” effects increase by up to 20% due

to feedback loops in which a shock to a manager propagates out and back via a

sequence of connected peers. Second, spillover effects (assumed to be zero in non-

network specifications) are substantial and increase estimates by an additional

30-55%. Spillover effects are similar to a network externality in which a shock to

a manager spills over onto his neighbors, such that an unsuspecting manager may

find his portfolio under stress due to funding problems by others holding a similar

set of positions. Coval and Stafford (2007) and Lou (2010) have established that

fund flows impact asset prices. My innovation is to consider the effect that these

fund flows may have on the fund flows of neighbors holding those same assets,

since the same flow-performance relationship holds (Chevalier and Ellison (1997))

even if asset prices change due to a peer’s forced sale.

I measure these effects with a network-based specification which includes con-

nections between portfolio managers along with their capital flows at time t. This

contemporaneous specification allows me to estimate cross-sectional steady-state

peer influence processes so the effect of each portfolio manager on each other man-

ager is estimated simultaneously. To identify this influence process, I specify the

two-step neighbor’s capital flow as an instrument. This is a valid instrument if

enough two-step neighbors are not themselves connected to the manager of inter-

est.5

I also show that the flows of connected neighbors are positively and signifi-

cantly correlated with a manager’s portfolio return; including these networked flow
5A “two-step neighbor” is simply my neighbor’s neighbor. For instance, a U.S. technology

fund may be connected to a mid-cap fund through common mid-cap technology holdings, and
that mid-cap fund may also be connected to a Latin American fund through mid-cap Latin
American holdings. Thus, the flows of the Latin American fund can instrument for the mid-cap
fund’s influence on the U.S. technology fund since they are only connected through their common
mid-cap neighbor.
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measures significantly reduces the influence of market returns and fund category

average flows as predictors. This is a remarkable result since a portfolio man-

ager’s own lagged fund flows show no significance in predicting returns (Frazzini

and Lamont (2008)). It is also consistent with a contagion process across managers

connected by common holdings, since inflows would induce buying, and outflows

selling, of at least a portion of the commonly held portfolio.

To fully identify my network effect, I control for other possible explanations of

correlated flows. Specifically, since Sirri and Tufano (1998) show that the size of a

mutual fund may influence investor flows due to search costs, I control for both a

manager’s own total net assets and neighbor’s total net assets. In addition, since

investor sector rotation strategies or other strategic asset allocation decisions may

induce flows to common categories, I include a category average fund flow, similar

to a Fama-French industry factor, as a control variable.

Given the result that capital flows seem to be contagious across similar portfo-

lios, I next address the nature of these portfolio connections. It may be that such

connections are relatively static, simply the result of natural linkages among varied

strategies which are time invariant. But it may also be that portfolio connections

are transient and related to crowded trades, such that interconnectedness may

grow unobserved. To investigate these two hypotheses, I measure the persistence

of network connections through time. Static network connections should show

significant autoregressive properties, while transient crowded trades should show

no long-term temporal predictability among portfolio connections. I show that

these connections among portfolio managers are somewhat persistent short term,

with network connections this quarter correlating 0.4 with last quarter’s portfolio

connections. However, the correlation across years is approximately 0.13, with no

correlation after two years. Since fund objectives are likely to persist across several
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years, this suggests that shorter term connections are at least partially driving my

result.

To further investigate the nature of these portfolio connections, I demonstrate

that the similarity of two portfolios increases not only in terms of portfolio overlap,

but also with concentration in those commonly held assets. That is, two managers

who overlap 20% of their portfolio will be twice as connected if that overlap is in

one holding than if it is equally held in two holdings. The implication is that a

mid-cap fund which holds hundreds of securities may not connect other portfolios

together as much as a fund with a few concentrated positions. It also means

that small movements toward more concentrated holdings may induce significant

connections to the extent that others hold similarly concentrated holdings. Small

amounts of overweighting compared to the manager’s benchmark may induce more

interconnection than a portfolio manager realizes.

First, I establish my hypotheses in the context of existing literature in Section

I. Next, in Section II, I describe my empirical approach to measuring capital flow

contagion, detailing network formation, measures, and methodology. In Section

IV, I discuss my results, including the interpretation of network coefficients and

their economic significance. I then further analyze the time-varying properties of

my network and its relationship to crowded trades in Section V, after which I

conclude with Section VI.

I. Hypotheses and Background

Quantifying the effects of capital flow contagion through interconnected asset

holdings implies hypotheses related to the prediction of mutual fund returns and

mutual fund flows. I first develop my hypothesis related to the prediction of

portfolio returns which helps establish portfolio overlaps as the mechanism for
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contagion. Second, I develop two hypotheses related to the spillover effects of

manager’s fund flows.

I propose that interconnected managers’ capital flows influence each other in

the following manner: inflows to neighboring portfolio managers induce purchases

of their existing portfolio and outflows induce sales, temporarily affecting the prices

of those assets bought or sold. But connected portfolio managers holding those

same assets should see their portfolio returns affected in a corresponding man-

ner, such that the capital flows of connected portfolio managers positively predict

portfolio returns. Subsequently, since negative returns predict outflows and posi-

tive returns predict inflows (Chevalier and Ellison (1997)), these affected managers

may experience their own inflows or outflows, perhaps beginning a market/funding

liquidity spiral (Brunnermeier and Pedersen (2009)). Thus, peer flows predict a

portfolio manager’s returns suggesting that interconnected portfolios are an im-

portant channel for capital flow contagion in financial markets.

The fact that a portfolio manager’s fund flows affect the assets he holds is

known. Coval and Stafford (2007) show that stocks with significant buying or

selling pressure experience subsequent positive and negative returns, respectively.

Lou (2010) addresses this question across all fund flows, not just extreme positive

and negative flows, and shows that this effect is still significant but asymmetric –

he estimates that one dollar of inflows correlates with purchasing 0.6 dollars of the

existing portfolio, while one dollar of outflows corresponds to selling one dollar of

the existing portfolio.

The “no arbitrage” condition in financial markets indicates that this mispricing

should be small or very short-term. But given that source of price pressure may

be hidden (e.g., Kyle (1985)), arbitrageurs may not identify a price movement as

a deviation from fundamentals, and thus not act to correct it. Arbitrageurs also
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face synchronization risk (Abreu and Brunnermeier (2002, 2003)), since multiple

arbitrageurs may be necessary to absorb the price pressure, as well as other limits

to arbitrage (e.g., Shleifer and Vishny (1997)). Indeed, rather than immediately

arbitraging an over- or under-pricing, these sophisticated investors may even ex-

acerbate the problem in a predatory manner to increase the mispricing and thus

the profitability of a subsequent convergence trade (Brunnermeier and Pedersen

(2005)).

To identify common portfolio holdings as a channel of contagion, I hypothesize

that the fund flows of a manager’s connected neighbors predict portfolio returns

through the buying and selling of the commonly held assets. Formally,

Hypothesis 1: The fund flows of neighbors connected by common asset holdings

positively predict a manager’s portfolio return.

To test this hypothesis, I compute a measure of connected-neighbor fund flows

weighted by portfolio similarity, and then estimate its impact on portfolio returns.

To determine my baseline and control variables, I draw from the existing literature

known predictor variables of mutual fund returns. I include the market return

which Carhart (1997) shows to be an important predictor of mutual fund returns,

as well as past flows to account for the flow-performance relationship established

in Chevalier and Ellison (1997). Since contemporaneous fund flows and portfolio

returns may suffer from endogeneity, I instrument peer flows in a GMM framework,

discussed in detail in Section II.C.

If connected-neighbor’s flows positively predict a manager’s portfolio returns,

the next logical step is to consider the effect on that manager’s fund flows, since re-

turns affect future fund flows. Chevalier and Ellison (1997) identify a performance-

to-flow relationship such that positive past returns predict future inflows and poor
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past returns predict future outflows. While Chevalier and Ellison measure these

effects through lagged returns, these outflows could be contemporaneous since a

sophisticated manager, seeing his poor returns, may sell in anticipation of future

outflows. Until now, investigating this relationship has been challenging due to

the endogeneity problem between contemporaneous flows and returns, a problem

I solve with my instrumental variables specification. This connection between the

capital flows of neighboring managers suggests two related hypotheses:

Hypothesis 2: The fund flows of neighbors connected by common asset holdings

positively predict a manager’s own fund flows.

Hypothesis 3: Spillover effects from each manager onto each other manager are

nonzero.

While I could test Hypothesis 2 with lagged connected-neighbor fund flows in a

simple panel framework, that same specification would only provide indirect sup-

port for Hypothesis 3. To test both hypotheses, I employ a network specification

which allows a contemporaneous equilibrium estimation of spillover effects across

a network of connected agents. In this network specification, I include other com-

mon predictors of capital flows such as past returns (e.g.,Chevalier and Ellison

(1997)), past flows (e.g., Coval and Stafford (2007)), total net assets, and fund

category average flows (e.g., Sirri and Tufano (1998)). I include my measure of

connected-neighbor fund flows as a predictor variable, instrumented by the two-

step neighbor fund flows. If the coefficient on this measure of peer’s capital flows is

positive and significant, this confirms Hypothesis 2: capital is contagious through

interconnected portfolios.

While a positive and significant relationship establishes the existence of a con-

tagion process, obtaining evidence for Hypothesis 3 requires interpreting the re-
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sulting coefficient estimate. Indeed, the richness of information available from

this network specification constitutes a primary advantage over a standard linear

regression model. This specification behaves like an autoregression, but in the

cross-section: fund flows at time t show up both as dependent and independent

variables, and as such the estimated coefficient on connected-neighbor flows affects

all other coefficient estimates in steady-state, similar to an temporal autoregres-

sion framework.6 When the model is rearranged such that flows are only the

dependent variable, the coefficient on each independent variable becomes a matrix

specifying the effect each portfolio manager has on each other manager in equilib-

rium.7 This compares to the scalar coefficient estimating the average effect in most

other specifications. The average of the off-diagonals of these matrix coefficients

measures the spillover effects, while the average of the diagonal in excess of the

non-networked linear coefficient measures feedback effects. Nonzero off diagonals

in this matrix coefficient provides evidence of Hypothesis 3.

To test these hypotheses, I need to more fully specify the connection between

portfolio managers and how I measure the neighbor’s capital flows and estimate

my network specification. This is the topic of the next section.

II. Network Methodology

My network relationship derives from the connections among portfolio man-

agers due to common asset holdings but there are many concepts of interconnection

in financial markets. Allen, Babus, and Carletti (2010) and Zawadowski (2011)

model connections among financial intermediaries in the interbank market and

Babus (2010) does the same for OTC markets. Their analysis focuses on coun-
6Specifically, this model is a Spatial Auto-Regression (SAR), which is popular in spatial

econometrics.
7I develop this more rigorously in Section IV.B.
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terparty relationships in a game-theoretic framework in which relationships are

typically known and intentionally created by each market participant. My mea-

sure of interconnection attempts to identify crowded trades in financial markets

as a separate source of connectedness.

Others have studied the effect of common owners on financial assets. Kyle

and Xiong (2001) model convergence traders spanning disparate markets inducing

comovement in the assets they hold, and more recently Anton and Polk (2010)

measure stock comovement as it relates to the number of common owners. Coval

and Stafford (2007) and Jotikasthira, Lundblad, and Ramadorai (2011) show that

funding pressure on owners affects the assets they hold, inducing price drops in

those assets in U.S. and international settings, respectively. My innovation is to

consider what happens to other managers holding the same assets with no funding

pressure of their own, or spillover effects.

To describe my methodology in more detail, I describe my Data in Section

A. I then develop my portfolio similarity measure in detail in Section B before

proceeding to descriptions of my GMM estimation approach, network instrument,

and full specification in Section C.

A. Data

My primary dataset is from Morningstar and contains the flows, returns, and

full portfolio holdings of U.S. Open Ended funds from 1998 to 2009.8 Flows of

funds are a simple dollar value per fund, per month or quarter. Note that my
8Elton, Gruber, Blake, Krasny, and Ozelge (2009) perform a thorough comparison with

the more commonly used data from Thomson Reuters. They also highlight the importance of
monthly observations of holdings since more frequent observations capture round trip within-
quarter trades otherwise missed, but there is only a subset of funds for which monthly data is
available. They also note that this appears to be a representative subsample, and so is unbiased
for inference in many areas. But for my purposes, since I am investigating more aggregate effects,
I require the entire population and so focus on quarterly observations.
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data includes reported values for both fund flows and portfolio returns, whereas

other studies typically compute fund flows from returns and changes in total net

assets. Because this data includes many bond funds and I want to be as inclusive

as possible, I keep any fund with nonzero equity position. I combine this data

with CRSP by CUSIP when necessary to obtain stock characteristics.

Importantly, this data contains the entire portfolio holdings of each open ended

fund. This means I have quarterly observations of each fund’s cash holdings as well

rather than the less frequent annual measures reported in the CRSP Mutual Fund

database. In what follows, Flow is always fund flow divided by total net assets as in

Coval and Stafford (2007) and Size is the log of total net assets. Cash is defined as

currency, treasuries, and other cash-like holdings, also divided by total net assets. I

compute a fund-level Amihud measure which is the portfolio weighted sum of each

equity holding’s individual Amihud measure over the previous quarter. Summary

statistics of these measures as well as peer measures are available in Table I.

B. Portfolio Similarity Measure – The Network

My data represents a set of portfolio managers with detailed holdings data

through time, but for simplicity, I drop the t index for this exposition and compute

these measures for each t. I construct the similarity between two portfolios, sij as

the dot product between the security weight vectors of each portfolio manager i
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and j, divided by the product of the Euclidean norm of each vector.9 Specifically,

sij = si · sj

|si| |sj|
(1)

where for each manager i, the Euclidean norm is defined across M securities as

|si| =

√√√√ M∑
m=1

s2
im (2)

Deriving this same measure in matrix form, let H be the holdings matrix, with

portfolio managers as each column, and each row consisting of the weight between

0 and 1 each manager places on that security. My portfolio similarity measure is

then

S = HTH

|H| · |H|
(3)

in which each sij already defined above is an element of symmetric similarity

matrix S. The norm of the matrix H is a Euclidean column norm, such that for

each column j, the norm of Hj is defined as

|Hj| =

√√√√ M∑
m=1

h2
jm (4)

Figure 1 plots percentiles of the distribution of this portfolio distance measure

through time.

To construct Peer Flow for each manager i, I compute a weight vector which
9Note that this similarity measure is the same as the cosine of the angle between the two vec-

tors in security space. An alternative choice, popular in social network analysis, is the Euclidean
distance, which is the square root of the dot product. While not literally a linear transformation,
it is similar to the normalized dot product. The Euclidean distance has two main downsides:
first, the maximum is not clearly defined and may vary from network to network, and second, it
needs to be inverted since higher values indicate greater distance – it is strictly a dissimilarity
measure. A typical transform is

(
maxij dij

)
− dij for each distance dij to make it a similarity

measure so higher weights go to closer peers.
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is each similarity measure sij divided by the sum over all similarities, setting self-

similarity sii to 0. I then compute Peer Flow as the dot product of the weight

vector and the corresponding vector of fund flows for each manager. Formally,

peer weights are computed as

PeerWeightij = sij∑
k
sik

, k 6= i (5)

and Peer Flow is thus

PeerF lowi =
∑

k

PeerWeightikFlowk (6)

For example, consider a portfolio manager with three neighbors at distances of

0.1, 0.2, and 0.1, such that the weights are .25, .50, and .25, respectively. If those

neighbor’s flows (divided by total net assets) are 0.01, 0.05, and 0.10, respectively,

then Peer Flow is (.25 ∗ .01) + (.5 ∗ .05) + (.25 ∗ .10) = 0.0525.

In matrix form, if W is a row-stochastic transformation of S, such that each

row sums to 1, then PeerF low = W ·Flow in which both PeerFlow and Flow are

N × 1 vectors and W is an N × N matrix at time t. Note that I also compute

other peer variables such as peer return, peer size (total net assets), and peer cash

(divided by total net assets) in the same way.10

C. Network Structure as Instrument

Since cross-sectional fund flows and returns of each portfolio manager at time

t are endogenous, I employ an instrument to identify influence rather than just
10This notion of portfolio distance is intuitively and mathematically similar to that of social

distance as in Conley and Topa (2002).
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correlation.11 Without instrumentation, a correlation between two portfolio man-

ager’s fund flows is not sufficient evidence of one’s influence on the other.

Following Bramoullé, Djebbari, and Fortin (2009), I employ a network-structure

based instrument to address this endogeneity based on “intransitive triads” which

are often present in a network. An intransitive triad is present if A connects to B

and B to C, but A is not connected to C. Thus, A can instrument for B’s influence

on C since any influence A has on C must be through the common relationship with

B. In network terminology, A and C are Two-Step neighbors, so my instrument is

TwoStepPeerFlow.

For instance, a U.S. technology fund may be connected to a mid-cap fund

through common mid-cap technology holdings, and that mid-cap fund may also

be connected to a Latin American fund through mid-cap Latin American holdings.

Thus, the flows of the Latin American fund can instrument for the mid-cap fund’s

influence on the U.S. technology fund since they are only connected through their

common mid-cap neighbor.

However, not all two-step neighbors form intransitive triads. Additionally,

while two portfolio managers may not be directly connected, they both main-

tain some set relationship to market-wide movements. Two-step neighbors can

only serve as an instrument if they satisfy the exclusion restriction – that the in-

strument is only correlated with the dependent variable through the endogenous

regressor. To address these concerns, Bramoullé, Djebbari, and Fortin (2009) spec-

ify a rank test which establishes that the instruments are not collinear with the

endogenous variable. To further test the validity of my instruments, I compute

various tests of weak instruments as well as Hansen’s J test of overidentification

in all specifications. All reported GMM specifications have results consistent with
11Since the diagonal of weighting matrix W is set to zero, Flowi is never on both sides of the

same specification, so there is no mechanical collinearity, only endogeneity.
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strong instruments and no correlation of instruments with the second stage resid-

ual, thereby indicating a valid specification.

Mathematically, two-step neighbors are computed as B = S2, which is matrix

multiplication (as opposed to element-by-element) where the diagonal of S has

already been set to 0 to avoid duplicating one-step and two-step neighbors.12 In

summation notation, the equivalent product is

bij =
N∑

q=1
siqsqj, q 6= i, j (7)

with the diagonal of B also set to zero such that a manager cannot be his own

two-step neighbor.13 If W̃ is the row-stochastic, N×N , two-step weighting matrix

derived from B, then TwoStepPeerF low = W̃ · Flow or as a summation

w̃ji = bji∑
k
bjk

(8)

TwoStepPeerF lowj =
∑

k

w̃jkFlowk (9)

To ensure overidentification, I include not just TwoStepPeerF low but also

TwoStepPeerF low2 as excluded instruments, which is standard in an IV specifi-

cation.

To test my first hypothesis, I instrument for peer fund flows as described above,
12A nonzero diagonal indicates a ‘self-loop.’ So, if S has a nonzero diagonal, a ‘two-step’

neighbor could be i connecting to i (a self loop) and then i connecting to j, which is just a
one-step neighbor.

13The diagonal of B must now be set to 0 because for every one-step neighbor, a manager
is his own two-step neighbor. For instance, i connects to j, but then j also connects back to i,
such that for every connection like this i is his own two-step neighbor.

15



but place portfolio returns as my dependent variable. Specifically, I estimate:

PeerF lowit = TwoStepPeerF lowit + TwoStepPeerF low2
it (10)

Retit = ̂PeerF lowit + Flowt−p +Rett−p

+ Sizeit + Cashit + Amihudit + PeerSizeit

+ PeerCashit + CategoryAvgF lowjt +MarketReturnt

(11)

with the primary explanatory variable being MarketReturn in a CAPM style

framework.14 If PeerF low is a positive predictor of portfolio returns, then it

seems highly likely that commonly held assets are the channel of influence.

Next, to test my second hypothesis that capital flows are contagious, I in-

corporate my network measure in addition to common predictor variables in a

specification with fund flows as the dependent variable. Coval and Stafford (2007)

employ both lagged flows and lagged returns as predictors, and Sirri and Tufano

(1998) show that fund category averages and fund size (measured as log of total net

assets) are important determinants of flows given investors’ non-zero search costs.

Since temporary asset price movements may be stronger for illiquid securities, I in-

clude a portfolio-wide Amihud measure which is simply the weighted average of the

Amihud liquidity measure computed for each individual equity holding (Amihud

(2002)).15

Since fund size is an important predictor of flows, I also include PeerSize as

a control variable. This control is important in a network specification because

if flows primarily go to larger funds (Sirri and Tufano (1998)), then funds who
14Carhart (1997) notes that this CAPM specification is gives similar results to his 3 factor

model.
15I also computed a full portfolio Amihud measure including cash and non-equity, non-cash

holdings at the minimum and maximum Amihud measure, respectively, with similar results.
Computed portfolio spreads and average daily volumes also gave similar results, available on
request
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are both large and connected may simply experience correlated flows without any

mutual influence.

A portfolio manager’s cash holdings provide a vital cushion against unexpected

redemptions, and as such they likely influence the prediction of inflows and out-

flows. Most studies exclude cash holdings because the data is unavailable, not

because cash holdings are unimportant. Because I do have this data, I include

it for both the manager and connected neightbors (PeerCash), since a manager

connected to cash-poor neighbors may be more susceptible to flow contagion.

In sum, I estimate the following set of equations in a GMM specification:

PeerF lowit = TwoStepPeerF lowit + TwoStepPeerF low2
it (12)

Flowit = ̂PeerF lowit + Flowt−p +Rett−p

+ Sizeit + Cashit + Amihudit + PeerSizeit

+ PeerCashit + CategoryAvgF lowjt

(13)

in which Fundi ∈ Categoryj, 4 time lags are included (p = 4) and ̂PeerF lowit is

the fitted values from equations (12).16

III. Identification and Estimation of a Network Influence Process

In addition to the more standard identification problems already addressed,

there are some unique identification problems associated with network inference,

which I now address following the typology in Manski (1993). According to Manski

(1993), identifying the endogenous social influence process I have just described

requires controlling for two other potential confounding effects: “correlated effects”
16Note that the exact specification of equation (12) includes all control variables in equation

(13). To use strict GMM terminology, PeerFlow is the endogenous regressor, TwoStepPeerF low
and TwoStepPeerF low2 are excluded instruments, and the rest of equation (13) are included
instruments.
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and “contextual effects.”17

“Correlated effects” simultaneously affect both connected managers due to

common, time-invariate characteristics. Correlated effects can be conceived as

a cointegration relationship where a relatively fixed relation among two neighbors

induces a proportional response to exogenous events. For example, two mutual

funds, one half the size of the other, may find that on average the smaller fund

receives half the capital flows of the large one. Since there may be a similar re-

lationship due to cash holdings, I include PeerSize and PeerCash to control for

these potentially common fund characteristics which may drive correlated flows.

I control for Manski’s “contextual” effects by including CategoryAvgFlows,

which represents the average flow for the Morningstar category to which each

open ended fund belongs. Contextual effects can be conceived as a network ver-

sion of industry effects, in which market-wide trends affect all members of the

group equally, but may change across time. For instance, a sector rotation strat-

egy which suggests buying utilities and health care stocks in a declining market

represents a wider shift in investor behavior, operating above the level of individual

portfolio managers.

A further identification problem may arise due to network density, as noted

by Kelejian, Prucha, and Yuzefovich (2006). If I have a very dense or “complete”

network such that everyone is equally connected, each network member would have

exactly the same PeerFlow measure. For example, assume that each portfolio

manager is connected to each other manager with a weight of exactly 1. This

would make PeerFlow equal to the average market-wide flow since the weight on

each flow variable would be 1
N

for every manager and therefore no longer display

cross-sectional variation. Given that my weighted density is less than 5%, this is
17Bramoullé, Djebbari, and Fortin (2009) also note that these controls are a necessary pre-

requisite for their instrumentation approach.
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unlikely to be a problem. As a further robustness check, I have run my results

thresholding my network at the 80th percentile, thus obtaining an unweighted

density of 10% with no material change in results.18

Finally, I estimate this set of equations by Generalized Method of Moments,

whereas most specifications of this type in the spatial econometrics literature esti-

mate this model via Maximum Likelihood. Conley (1999) notes that ML specifica-

tions in which spatial dependence is measured with error are misspecified. While

this is unlikely to be a problem with geographical measures of distance typical of

the spatial econometrics literature, my measure of distance in security space may

be much less precise. Fortunately, Kelejian and Prucha (2002) show that with

panel data, such as I have here, both OLS and GMM estimators are consistent,

and thus represents the appropriate estimation approach. Elhorst (2010) includes

a short discussion on ML vs IV/GMM estimators, noting that while the use of

IV/GMM is promising, it is still new to the spatial econometrics literature and

needs further research.

IV. Results

The baseline fund flow specification is from Sirri and Tufano (1998) and Coval

and Stafford (2007). They regress fund flow on lagged flows, lagged returns, fund

size, and fund category average flows at time t, with fund flow defined as dollar

flows normalized by total net assets, the same normalization I apply throughout.

When I run this specification in a pooled OLS and Fama-MacBeth framework, I

get results qualitatively similar to Coval and Stafford (2007) and others who have

investigated this relationship such as Lou (2010) and Ferreira, Keswani, Miguel,
18Weighted density is the sum of all network connections in the network divided by the sum

of all possible network connections set to 1, N2. Unweighted density is the same, but sets any
weighted network link to 1 first.
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and Ramos (2011). However, I find it necessary to include both time and firm

fixed effects and further cluster my standard errors in both time and portfolio

manager dimensions.

When I run both the Breusch-Pagan test and an F test on RSS of regressions

with and without time and firm fixed effects, I find that it is necessary to include

some type of fixed or random effects. A Hausman test verifies that fixed effects

are necessary over random effects (Kennedy (2008)). Clustering standard errors

in both time and manager dimensions produces large changes in standard errors

indicating that this is a necessary step (Petersen (2009)). I maintain this specifica-

tion design throughout. Results from these tests as well as a table comparing the

varying differences in specification are available upon request.19 Including time

fixed effects also controls for market wide events affecting all funds, and fund fixed

effects control for fund or fund manager time-invariant attributes.

A. Regression Results

Our econometrics established, I turn to Table II which contains the results from

the first stage of the instrumental variables regression. The R2 of the Peer Flow

regression is 0.83, indicating the excellent fit necessary in a first stage regression.

Next, I begin by regressingReturn on my networked and instrumented PeerF low

variable as evidence that portfolio overlaps are driving a contagion effect, rather

than a correlated flow process. As shown in Table III, there is a positive and signif-

icant coefficient on PeerFlow which simultaneously increases the R2 from 0.14 to

0.17 and reduces the magnitude of both Market Return from 0.90 to 0.71 and Cat-

egory Avg Flow from 0.39 to 0.23, with all changes statistically significant. That

the fund flows from neighboring portfolio managers positively predict returns is
19Recall that my dataset is different from the other studies cited and as such these test results

may or may not extend to their specifications.
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solid evidence that portfolio interconnections are the channel for this influence.

My main specification is in Table IV. Here, Flow is the dependent variable

with PeerF low as independent variable alongside other control variables. Again,

PeerF low enters in positively and significantly with slight decreases in other pre-

dictor variables, indicating a flow contagion process. However, since Flow enters

into the specification both as dependent and independent variable, I must trans-

form the equation similar to an autoregression specification to fully interpret this

coefficient.

B. Network Coefficient Interpretation

To interpret the coefficient on Model 2 in Table IV, I begin by rewriting my

specification in Equation 13 in matrix form, without the instrumentation:20

Ft = ρsWtFt + ρtFt−1 +Xtβ + ε (14)

in which Ft is the N×1 vector of fund flows at time t. Wt is a row-stochastic trans-

formation of N×N portfolio similarity matrix S at time t, such that PeerF lowt =

Wt · Ft. Xt represents all other control and explanatory variables for simplicity.

Next, I group together all terms involving Ft, also setting Ft = Ft−1 to in-

corporate a steady-state process.21 Since flows are not persistent, this is a trivial
20For this analysis, I simply use the endogenous PeerFlow rather than the predicted value

from the first stage regression, which simplifies the exposition and likely is a good approximation
since the R2 of the first stage regression is 0.83. However, I still use the coefficient estimates
from the instrumented specification.

21Note that in my specification, I have 4 Flow lags, so Ft = Ft−p for p = 1, 2, 3, 4 and ρt is
the sum of the 4 coefficients. I do the same for the coefficient on Return lags.
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simplification. The result is

((1− ρt) IN − ρsWt)Ft = Xtβ + ε (15)

Ft = X1tβ̃1 +X2tβ̃2 + . . .+XP tβ̃P + ε (16)

for each p = 1 . . . P explanatory variables. Each actual estimated coefficient is

β̃p,N×N = ((1− ρt) IN − ρsWt)−1 βp (17)

which is an N × N matrix. Without my network specification, the comparable

coefficient would be the scalar coefficient estimate times an N×N identity matrix.

In equation 17, βReturn is the sum of the return coefficients from Model 2 in

Table IV since in steady-state, t = t− p ∀p. Since PeerCash = W · Cash, βCash

is the sum of the coefficient on Cash times the identity matrix plus the coefficient

on PeerCash times W . Mathematically, if βC is the regression coefficient on Cash

and βP C is the regression coefficient on PeerCash, then the overall effect of cash,

βCash is

βCash = βC · I + βP C ·W (18)

βCategoryAvgF low is simply the corresponding estimated coefficient from Model 2 in

Table IV.

To interpret this network coefficient, I divide it into feedback effects, repre-

sented by the diagonal, and spillover effects which reside on the off-diagonal. The

results for important explanatory variables are in Table V. The first column is

the scalar coefficient estimate, β, without the network transformation. Next are

the incremental feedback effects, computed as the average of the diagonal less

the scalar coefficient. Finally, spillover effects are computed as the average of all
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off-diagonal entries in the network coefficient.

Table V shows how my network specification accounts for feedback and spillover

effects, increasing estimate by up to 76%. Specifically, returns and category av-

erage flows show effects that are 52% greater than non-networked effects, and

networked cash holdings effects are 76% greater.

To illustrate spillover, I simulate a shock to approximately 40% of the fund

managers in the sample and measure the impact to the other 60%, which is as-

sumed to be zero in a non-networked specification. I shock Cash by one standard

deviation, simulating an unexpected redemption, and I shock Returns by one stan-

dard deviation, simulating an unexpected market movement.22 The results are

illustrated in Figure 2 and Figure 3. Note that these spillover effects are as large

as 0.01, which is the mean value of flow and approximately 10% of the standard

deviation, available in Table I.

To more fully identify capital flow contagion as a unique phenomena, I perform

several robustness checks. I re-run my main specification removing all sector funds

from the dataset, and find the result strengthened – the coefficient is larger and

estimated with more precision.23,24

Results with and without sector funds are presented in Tables VI and VII. In

Table VI, the contagion process in Model 2 without sector funds is almost 25%

greater than the baseline including them (0.50 compared to 0.41) whereas sector

funds alone show no significance. Fund Category Avg is also smaller without sector

funds, at 0.62 vs 0.73 in the baseline result. Among sector funds only, this same
22Since managers are connected by assets, for this to be an isolated shock, it could be to

non-equity holdings or other non-connected holdings.
23Sector funds are those labeled Technology, Utilities, Financials, etc. corresponding to equi-

ties held in a specific industry.
24Note that this is a simple division of my sample which only considers the portfolio managers

who are impacted by peer flows, not a full network subset. Subsetting a network specification is
non-trivial in general since there are many connections among and between any chosen grouping
of portfolio managers such that any subset arbitrarily cuts some of those ties and keeps others.
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control is 0.82, indicating that Fund Category Avg is a primary driver of sector

fund flows. In Table VII, there is very little difference between the models with

and without sector funds, displayed in Models 1 and 2. Fund Category Avg drops

from 0.23 to 0.13, indicating that while PeerF low and Fund Category Avg overlap

somewhat among sector funds, they are much less related in the broader sample.

Since financial crises induce correlations across disparate asset groups, it is pos-

sible that my result is simply arising from the recent financial crisis. Accrodingly,

I re-run my specification omitting the financial crisis, stopping my analysis in the

second quarter of 2007 and 2008, respectively, with results presented in Tables

VIII and IX. Interestingly, the flow contagion effect is stronger when omitting the

financial crisis. This can be seen in Model 2 of Table VIII, in which the PeerF low

coefficient rises moderately (though without statistical significance) from 0.41 to

0.44. Table IX presents the results for returns, again showing no marked difference.

V. Crowded Trades and Network Persistence

Having provided evidence that portfolio interconnections may induce capital

flow contagion, I proceed to investigate the nature of these connections. If these

portfolio connections are relatively persistent, then this static set of connections

may be more easily identified from public holdings disclosures by both market

participants and regulators alike. On the other hand more transient portfolio

interconnections may make capital flow contagion effects much harder to detect

ex ante.

Between the two, transient or hard-to-observe portfolio interconnections pose

the greater risk to portfolio managers and regulators alike since a hidden conta-

gion process is more likely to generate unexpected negative shocks. These transient

portfolio interconnections may arise due to so-called “crowded trades”, which oc-
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cur when portfolio managers take concentrated or overweighed positions in a small

set of stocks.25 Due to lags in mandatory disclosures, crowded trades may not be

detectable to market participants until many months after the trades are estab-

lished. Thus, with no knowledge of network connections, negative flow shocks

across portfolio connections will be unanticipated and likely produce greater neg-

ative consequences than shocks which are at least partially anticipated.

Table X presents the results of an autoregression on my network measure,

similar to the main specification in Anton and Polk (2010). This specification

takes the N ×N network of relationships between all of the portfolio managers at

time t and puts them in a N × 1 vector as the dependent variable. Then the same

network of relationships at t− 1, t− 2, enter as independent variables, vectorized.

I then run this regression for each time t and summarize the coefficients across

time in a Fama-MacBeth framework.

The marginal effects of the lags diminish to be statistically insignificant af-

ter 3 lags, but still show some autoregressive properties. The network distance

correlation lagged one quarter is 0.41, which indicates some short-term persis-

tence. To estimate the correlation two quarters previous, I compute 0.412 +0.25 =

0.42, showing that the persistence extends to the previous six months. But the

correlation between the network distance measure and that 3 quarters past is

0.413 + 0.252 + 0.765 = 0.21, a significant drop off, and then one year past is

0.414 + 0.253 + 0.082 + 0.0 = 0.05 if I treat the insignificant 4th lag as 0, or 0.13 if

I retain it. After two years, retaining the first four coefficients, the correlation is

0.418 + 0.257 + 0.086 + 0.085 = 0.0009, which is very close to 0.26 Since portfolio
25Crowded trades are also related to the herding literature. Sias (2004) summarizes the broad

classifications motivating herding. Rationally, managers herd on correlated private information
(Froot, Scharfstein, and Stein (1992)). Other explanations include reputation-based herding
(Scharfstein and Stein (1990)), and fads (Barberis and Shleifer (2003)).

26This analysis of time-series coefficients comes from Hamilton (1994), Chapter 1.
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objectives likely persist greater than two years, this suggests that there is some

transience to my measure of interconnectedness and thus that crowded trades or

herding among institutional managers plays a role in capital flow contagion.

Finally, to further investigate the nature of portfolio connectivity, I show that

my normalized dot product distance measure increases in two dimensions. First,

it is increasing in portfolio overlap, which is its primary purpose. As the percent-

age of portfolio overlap increases, the distance between two managers in security

space decreases (they are more similar in security space). But, perhaps less in-

tuitively, my portfolio distance measure is also increasing in the concentration

of those holdings. This is illustrated in Figure 4. Holding total portfolio over-

lap constant, a single concentrated position gives twice as much similarity as two

overlapping holdings of equal proportion. This property of my portfolio distance

measure indicates that concentrated positions give rise to more interconnected-

ness. Accordingly, crowding or overweighting in a specific set of securities may

induce more connectedness among those managers than they may realize.

VI. Conclusion

In the wake of the recent financial crisis, the interconnection of market partici-

pants has become an important new area of research. Employing a novel, network-

based specification, I show that interconnected intermediaries exhibit contagious

capital flows, exposing them to feedback effects and spillover effects which result

in estimates 50-75% greater than non-networked coefficients. To incorporate these

network connections simultaneously, I contemporaneously estimate the influence

of each portfolio manager’s capital flows on each other manager by exploiting the

network structure as an instrument.

I also have shown some evidence that that these contagious flows are the re-
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sult of crowded trades – short-term, popular market positions – since portfolio

connection exhibits only a small amount of short-term persistence. Furthermore,

I have illustrated how distances between portfolios in security space emphasize

concentrated positions, such that active managers overweighting portions of their

portfolio may unintentionally increase their dependence on similar neighbors.

While my analysis focuses on the equity holdings of open ended funds, it also

has implications for collateralized financing. Financial intermediaries who rely

on collateralized (wholesale) financing to fund their investments are growing in

market share (Adrian and Shin (2010)). It may be that my results imply a broader

“collateral contagion” effect which could have played a role in recent runs on repo

financing (Gorton and Metrick (2011)). Since even interbank lending is becoming

more collateralized, Allen and Gale (2000)’s canonical model of interbank financial

contagion may be further amplified by connected collateral.27

This work also provides motivation for the collection of more detailed holdings

data from market participants, since the results described herein can be charac-

terized as a negative network externality which may merit government regulation.

Indeed, Brunnermeier, Hansen, Kashyap, Krishnamurthy, and Lo (2011) recently

responded to an AEA/NSF call for proposals on “grand challenge questions” for

research in the next ten years by advocating the collection of additional data

and developing network models in the pursuit of quantifying systemic financial

risk. While immediate public disclosure may have unintended predatory trading

effects (Brunnermeier and Pedersen (2005)), confidential disclosure to regulatory

bodies and/or delayed public disclosure are likely to be beneficial and could be
27In November 2009, the ECB (Heider and Hoerova (2009)) reported that interest rates for

collateralized lending in the interbank market since 2007 were significantly lower than unsecured
rates, a historical divergence, and a more recent report from the Financial Times indicates that
interbank unsecured lending has essentially disappeared. (http://ftalphaville.ft.com/blog/2010/
08/16/315556/euribor-has-been-vaporised/)

27

http://ftalphaville.ft.com/blog/2010/08/16/315556/euribor-has-been-vaporised/
http://ftalphaville.ft.com/blog/2010/08/16/315556/euribor-has-been-vaporised/


the purview of the newly formed Office of Financial Research established by the

Dodd-Frank Act.

While network methods are becoming more popular in corporate finance (e.g.,

Hochberg, Ljungqvist, and Lu (2007), Cohen, Frazzini, and Malloy (2008), Ahern

and Harford (2010)) and market microstructure (Cohen-Cole, Kirilenko, and Pat-

acchini (2010)), little has been done applying network methods to equity markets.

My network approach allows a steady-state analysis of this peer influence process

in the cross-section, bringing structure to cross-sectional analysis previously only

available in the time series. While I have applied it to portfolio interconnections,

it may also have broad applicability to other areas such as interbank lending (e.g.

Cohen-Cole, Patacchini, and Zenou (2011)) or stock market volatility (Greenwood

and Thesmar (2011)). And in a time when bailouts are motivated not because of

too-big-to-fail, but because of too-interconnected-to-fail, understanding and quan-

tifying the interconnections among market participants is a vital pursuit.
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Figure 2: The effect of a shock to cash holdings within a subset of portfo-
lio managers. This histogram illustrates the effect of one standard deviation negative
shock to cash holdings divided by total net assets, which simulates an unexpected re-
demption by investors. Shock is applied to approximately 40% of portfolio managers,
defined as the most connected managers (top tercile) in any time period. Plotted here
is the impact to the 60% of managers not shocked and thus is illustrative of spillover
effects.



Figure 3: The effect of a shock to portfolio returns within a subset of portfolio
managers. This histogram illustrates the effect of one standard deviation negative
shock to portfolio returns, which simulates an unexpected market movement or impact to
non-equity (i.e. non-connected) portion of portfolio. Shock is applied to approximately
40% of portfolio managers, defined as the most connected managers (top tercile) in any
time period. Plotted here is the impact to the 60% of managers not shocked and thus is
illustrative of spillover effects.



Figure 4: Two dimensions of the portfolio distance measure. This demonstrates
how interconnectedness as measured by the normalized dot product between two port-
folios increases in two different ways. The axis on the right is increasing in portfolio
overlap, i.e. the percentage of the portfolio that overlaps. The axis on the left is increas-
ing in the concentration of that position, holding the percentage of overlap constant.
More concentrated positions are thus closer in security space, holding overlap constant.



Table I: Fund Summary Statistics
Summary statistics for fund data as used in regression specifications. Flow is
dollar flows divided by total net assets and Cash is cash holdings divided by total
net assets. Size is log of total net assets. Amihud is a portfolio weighted measure
of the Amihud values of equity holdings, logged. Fund Category Average is the
average Flow across Morningstar categories. Peer variables are weighted by
network connections. Data is quarterly from 1995 to 2009.

Variable Names N Mean Std Dev Min Max

Flow 147,753 0.010 0.168 -1.000 0.735
Return 147,608 0.014 0.115 -0.990 4.871
Size 147,753 18.930 1.992 0.693 25.988
Cash 147,753 0.047 0.071 -0.003 0.535
Amihud 138,259 -13.759 2.127 -30.567 -5.515
Fund Category Avg 147,753 0.010 0.045 -1.000 0.735
Peer Flow 147,745 0.007 0.027 -1.000 0.735
Peer Return 147,749 0.012 0.097 -0.325 0.488
Peer Size 147,753 20.869 0.526 10.455 25.467
Peer Cash 147,753 0.043 0.016 -0.003 0.535
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Table II: First Stage GMM Regression
First stage regressions with endogenous regressors as dependent variables. Peer Flow is
the weighted average of peer connected flow, and Two Step Peer Flow is the same of
their neighbor’s neighbors, used as instruments. Flow is dollar flows divided by total
net assets and Cash is cash holdings divided by total net assets. Size is log of total net
assets. Amihud is a portfolio weighted measure of the Amihud values of equity holdings,
logged. Fund Category Average is the average Flow across Morningstar categories. Data
is quarterly from 1995 to 2009. Time and Fund Fixed Effects included. T statistics are
in parentheses and significance is denoted at the 1, 5, and 10% level.

(1)
Peer Flow

Two Step Peer Flow 1.3973∗∗∗

(58.28)

Two Step Peer Flow2 -1.9472∗∗∗

(-4.08)

Lag1 Flow 0.0006∗∗

(2.21)

Lag2 Flow 0.0006∗∗

(2.32)

Lag3 Flow 0.0001
(0.55)

Lag4 Flow 0.0005∗∗

(2.51)

Lag1 Return 0.0129∗∗∗

(4.27)

Lag2 Return 0.0082∗∗∗

(3.86)

Lag3 Return 0.0054∗∗

(2.52)

Lag4 Return 0.0038∗∗

(2.06)

Fund Size 0.0002∗

(1.84)

Cash Pct 0.0017∗

(1.87)

Amihud Illiq 0.0001
(0.63)

Fund Category Avg 0.0388∗∗∗

Continued on next page...
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(1)
Peer Flow

(9.77)

Pr Fund Size 0.0009
(1.00)

Pr Cash Pct 0.2930∗∗∗

(6.73)

Observations 84882
R Squared 0.83
Fund clusters 5,158
Time clusters 44
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Table III: Effect of Peer Flows on Portfolio Returns
Portfolio return is the dependent variable, provided by Morningstar. Data is quarterly
from 1998 to 2009, each panel variable is any open ended fund holding a nonzero equity
position. Network relation is the normalized dot product, and peer effects are the
weighted average of peer characteristics. Flow is the fund flow divided by total net
assets. Fund size is the log of total net assets. Cash Pct is cash holdings divided by
total net assets. Amihud is the portfolio weighted sum of equity holdings’ Amihud
measures computed over the previous quarter. Market return is CRSP value weighted
market return, and Category Avg Flow is the average of all reported fund flows by
Morningstar category. Flow and return lags 3 and 4 included but not shown. Time and
Fund Fixed Effects included. Hansen J stat is a test of overidentification for which the
null hypothesis is that instruments are uncorrelated with stage 2 regression, KP LM
stat tests the null of weak instruments. T statistics are in parentheses and significance
is denoted at the 1, 5, and 10% level.

(1) (2)
Port Ret Port Ret

Peer Flow 1.2641∗∗∗

(6.25)

Market Return 0.9038∗∗∗ 0.7143∗∗∗

(4.91) (3.86)

Fund Category Avg 0.3896∗∗∗ 0.2256∗∗∗

(6.44) (5.98)

Pr Fund Size 0.0046
(0.52)

Pr Cash Pct -0.6319
(-1.30)

Lag1 Flow -0.0030 -0.0026
(-0.80) (-0.71)

Lag2 Flow -0.0000 0.0010
(-0.01) (0.32)

Lag1 Return -0.0000 -0.0614
(-0.00) (-0.91)

Lag2 Return -0.0517 -0.0868
(-0.84) (-1.47)

Fund Size -0.0016 -0.0039∗∗

(-0.88) (-2.48)

Cash Pct 0.0249∗∗ 0.0155
(1.99) (1.64)

Amihud Illiq 0.0003 0.0016∗∗
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(1) (2)
Port Ret Port Ret

(0.44) (2.48)

Observations 84804 84804
R Squared 0.14 0.17
Fund clusters 5,152 5,152
Time clusters 44 44
Est Method OLS GMM
Hansen J stat . 1.71
J p value 0.1906
KP LM Stat 32.11
KP LM p value 0.0000
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Table IV: Effect of Peer Flow on Fund Flows
Flow ratio is the dependent variable and is the fund flow divided by total net assets.
Data is quarterly from 1998 to 2009, each panel variable is any open ended fund holding
a nonzero equity position. Network relation is the normalized dot product, and peer
effects are the weighted average of peer characteristics. Fund size is the log of total net
assets. Cash Pct is cash holdings divided by total net assets. Amihud is the portfolio
weighted sum of equity holdings’ Amihud measures computed over the previous quarter.
Category Avg Flow is the average of all reported fund flows by Morningstar category.
Flow and return lags 3 and 4 included but not shown. Time and Fund Fixed Effects
included. Hansen J stat is a test of overidentification for which the null hypothesis is
that instruments are uncorrelated with stage 2 regression, KP LM stat tests the null of
weak instruments. T statistics are in parentheses and significance is denoted at the 1,
5, and 10% level.

(1) (2)
Flow Flow

Peer Flow 0.4052∗∗∗

(3.21)

Fund Category Avg 0.7840∗∗∗ 0.7330∗∗∗

(11.31) (8.91)

Pr Fund Size -0.0258∗∗∗

(-3.79)

Pr Cash Pct 0.1064
(0.45)

Lag1 Flow 0.0504∗∗∗ 0.0494∗∗∗

(3.01) (2.96)

Lag2 Flow 0.0828∗∗∗ 0.0862∗∗∗

(5.77) (6.09)

Lag1 Return 0.1615∗∗∗ 0.1471∗∗∗

(8.85) (8.78)

Lag2 Return 0.0874∗∗∗ 0.0772∗∗∗

(3.67) (3.58)

Fund Size 0.0170∗∗∗ 0.0162∗∗∗

(6.59) (6.40)

Cash Pct 0.3046∗∗∗ 0.2985∗∗∗

(16.94) (16.81)

Amihud Illiq 0.0027∗∗∗ 0.0024∗∗∗

(4.37) (3.76)

Observations 84757 84757
R Squared 0.09 0.09
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(1) (2)
Flow Flow

Fund clusters 5,148 5,148
Time clusters 44 44
Est Method OLS GMM
Hansen J stat 0.00 1.98
J p value 0.1596
KP LM Stat 32.11
KP LM p value 0.0000
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Table V:
Contagion Effect of Peer Flows on Fund Flows - Long Run Steady State
Contagion effect based on Model 2 in Table IV, assuming long run and cross-sectional
equilibrium (through time and across funds). Coeff Estimate is non-networked estimate,
Feedback Effect includes the incremental average spillover effects which circulate back
to the same fund, Spillover effect is the average off-diagonal effects among portfolio
managers. Data is quarterly from 1998 to 2009, each panel variable is any open ended
fund holding a nonzero equity position. Network relation is the normalized dot product.
Category Avg Flow is the average of all reported fund flows by Morningstar category.

Coeff Feedback Spillover Percent
Estimate Effect Effect Underestimated

Return 0.3194 0.0640 0.1024 52%
Cash 0.2985 0.0598 0.1659 76%
Category Mean 0.7330 0.1468 0.2350 52%
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Table VI: Results removing sector funds – fund flows
Fund flow divided by total net assets is the dependent variable, provided by Morningstar.
Model 1 is the baseline, taken from Model 2 of Table IV. Model 2 is the same, but with
sector funds omitted from the analysis. Model 3 includes only sector funds. Sector funds
are mutual funds with an industry-specific category, such as Technology or Health Care.
Data is quarterly from 1998 to 2009, each panel variable is any open ended fund holding
a nonzero equity position. Network relation is the normalized dot product, and peer
effects are the weighted average of peer characteristics. Fund size is the log of total net
assets. Cash Pct is cash holdings divided by total net assets. Amihud is the portfolio
weighted sum of equity holdings’ Amihud measures computed over the previous quarter.
Market return is CRSP value weighted market return, and Category Avg Flow is the
average of all reported fund flows by Morningstar category. Time and Fund Fixed Effects
included. Hansen J stat is a test of overidentification for which the null hypothesis is
that instruments are uncorrelated with stage 2 regression, KP LM stat tests the null of
weak instruments. T statistics are in parentheses and significance is denoted at the 1,
5, and 10% level.

(1) (2) (3)
Flow Flow Flow

Peer Flow 0.4052∗∗∗ 0.5028∗∗∗ 0.3706
(3.21) (3.61) (1.38)

Lag1 Flow 0.0494∗∗∗ 0.0868∗∗∗ -0.1951∗∗∗

(2.96) (5.14) (-5.11)

Lag2 Flow 0.0862∗∗∗ 0.0859∗∗∗ -0.0040
(6.09) (5.97) (-0.14)

Lag3 Flow 0.0192∗∗ 0.0193∗ -0.0268
(2.00) (1.95) (-1.20)

Lag4 Flow 0.0119 0.0197∗∗ -0.0413
(1.19) (2.12) (-1.41)

Lag1 Return 0.1471∗∗∗ 0.1920∗∗∗ 0.0885∗∗∗

(8.78) (9.60) (3.51)

Lag2 Return 0.0772∗∗∗ 0.0993∗∗∗ 0.0240
(3.58) (3.81) (1.35)

Lag3 Return 0.0507∗∗∗ 0.0724∗∗∗ -0.0003
(3.10) (3.92) (-0.01)

Lag4 Return 0.0444∗∗ 0.0632∗∗∗ -0.0019
(2.42) (2.86) (-0.12)

Fund Size 0.0162∗∗∗ 0.0137∗∗∗ 0.0514∗∗∗

(6.40) (5.90) (4.82)

Cash Pct 0.2985∗∗∗ 0.2846∗∗∗ 0.3845∗∗∗
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(1) (2) (3)
Flow Flow Flow

(16.81) (15.06) (6.14)

Amihud Illiq 0.0024∗∗∗ 0.0023∗∗∗ 0.0031
(3.76) (3.67) (1.25)

Fund Category Avg 0.7330∗∗∗ 0.6238∗∗∗ 0.8167∗∗∗

(8.91) (6.44) (6.17)

Pr Fund Size -0.0258∗∗∗ -0.0256∗∗∗ -0.0608∗∗∗

(-3.79) (-3.66) (-2.74)

Pr Cash Pct 0.1064 0.0981 -0.1813
(0.45) (0.40) (-0.38)

Observations 84757 76698 8059
R Squared 0.09 0.09 0.18
Fund clusters 5,148 4,704 444
Time clusters 44 44 44
Est Method
Hansen J stat 1.98 2.30 1.79
J p value 0.1596 0.1292 0.1808
KP LM Stat 32.11 29.86 23.80
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Table VII: Results removing sector funds – portfolio returns
Portfolio return is the dependent variable, provided by Morningstar. Model 1 is the
baseline, taken from Model 2 of Table III. Model 2 is the same, but with sector funds
omitted from the analysis. Model 3 includes only sector funds. Sector funds are mutual
funds with an industry-specific category, such as Technology or Health Care. Data
is quarterly from 1998 to 2009, each panel variable is any open ended fund holding
a nonzero equity position. Network relation is the normalized dot product, and peer
effects are the weighted average of peer characteristics. Fund size is the log of total net
assets. Cash Pct is cash holdings divided by total net assets. Amihud is the portfolio
weighted sum of equity holdings’ Amihud measures computed over the previous quarter.
Market return is CRSP value weighted market return, and Category Avg Flow is the
average of all reported fund flows by Morningstar category. Time and Fund Fixed Effects
included. Hansen J stat is a test of overidentification for which the null hypothesis is
that instruments are uncorrelated with stage 2 regression, KP LM stat tests the null of
weak instruments. T statistics are in parentheses and significance is denoted at the 1,
5, and 10% level.

(1) (2) (3)
Port Ret Port Ret Port Ret

Peer Flow 1.2641∗∗∗ 1.2407∗∗∗ 1.9446∗∗∗

(6.25) (6.15) (4.66)

Lag1 Flow -0.0026 -0.0028 0.0043
(-0.71) (-0.95) (0.39)

Lag2 Flow 0.0010 0.0010 0.0063
(0.32) (0.37) (0.63)

Lag1 Return -0.0614 -0.0576 -0.1003
(-0.91) (-0.89) (-1.17)

Lag2 Return -0.0868 -0.0685 -0.1630∗∗

(-1.47) (-1.26) (-2.05)

Market Return 0.7143∗∗∗ 0.7567∗∗∗ 0.6405∗∗

(3.86) (4.35) (2.23)

Fund Category Avg 0.2256∗∗∗ 0.1327∗∗∗ 0.2539∗∗∗

(5.98) (3.33) (4.01)

Amihud Illiq 0.0016∗∗ 0.0014∗∗ 0.0019
(2.48) (2.17) (0.94)

Cash Pct 0.0155 0.0147∗ 0.0359
(1.64) (1.66) (1.01)

Fund Size -0.0039∗∗ -0.0045∗∗∗ 0.0011
(-2.48) (-3.24) (0.23)

Pr Fund Size 0.0046 0.0028 0.0395
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(1) (2) (3)
Port Ret Port Ret Port Ret

(0.52) (0.35) (1.12)

Pr Cash Pct -0.6319 -0.3495 -2.7786∗∗

(-1.30) (-0.80) (-2.50)

Observations 84804 76742 8062
R Squared 0.17 0.17 0.23
Fund clusters 5,152 4,708 444
Time clusters 44 44 44
Est Method
Hansen J stat 1.71 2.04 0.78
J p value 0.1906 0.1533 0.3769
KP LM Stat 32.11 29.86 23.83
KP LM p value 0.0000 0.0000 0.0000
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Table VIII: Results removing the financial crisis – fund flows
Fund flow divided by total net assets is the dependent variable, provided by Morningstar.
Model 1 is the baseline, taken from Model 2 of Table IV, ranging from 1998 to 2009.
Model 2 is the same, but only including quarters from 1998 through the second quarter
of 2007. Model 3 extends through the second quarter of 2008. Each panel variable is any
open ended fund holding a nonzero equity position. Network relation is the normalized
dot product, and peer effects are the weighted average of peer characteristics. Fund
size is the log of total net assets. Cash Pct is cash holdings divided by total net assets.
Amihud is the portfolio weighted sum of equity holdings’ Amihud measures computed
over the previous quarter. Market return is CRSP value weighted market return, and
Category Avg Flow is the average of all reported fund flows by Morningstar category.
Time and Fund Fixed Effects included. Hansen J stat is a test of overidentification for
which the null hypothesis is that instruments are uncorrelated with stage 2 regression,
KP LM stat tests the null of weak instruments. T statistics are in parentheses and
significance is denoted at the 1, 5, and 10% level.

(1) (2) (3)
Flow Flow Flow

Peer Flow 0.4052∗∗∗ 0.4393∗∗∗ 0.4070∗∗∗

(3.21) (3.17) (3.15)

Lag1 Flow 0.0494∗∗∗ 0.0117 0.0358∗

(2.96) (0.53) (1.81)

Lag2 Flow 0.0862∗∗∗ 0.0757∗∗∗ 0.0860∗∗∗

(6.09) (4.87) (5.42)

Lag3 Flow 0.0192∗∗ 0.0060 0.0129
(2.00) (0.45) (1.24)

Lag4 Flow 0.0119 -0.0055 0.0003
(1.19) (-0.42) (0.02)

Lag1 Return 0.1471∗∗∗ 0.1428∗∗∗ 0.1510∗∗∗

(8.78) (6.69) (7.25)

Lag2 Return 0.0772∗∗∗ 0.0868∗∗∗ 0.0962∗∗∗

(3.58) (2.84) (3.23)

Lag3 Return 0.0507∗∗∗ 0.0375∗∗ 0.0397∗∗

(3.10) (2.13) (2.27)

Lag4 Return 0.0444∗∗ 0.0378∗ 0.0399∗∗

(2.42) (1.85) (2.00)

Fund Size 0.0162∗∗∗ 0.0238∗∗∗ 0.0188∗∗∗

(6.40) (4.81) (5.35)

Cash Pct 0.2985∗∗∗ 0.2958∗∗∗ 0.3046∗∗∗

(16.81) (13.64) (15.44)
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(1) (2) (3)
Flow Flow Flow

Amihud Illiq 0.0024∗∗∗ 0.0027∗∗∗ 0.0022∗∗∗

(3.76) (3.49) (3.09)

Fund Category Avg 0.7330∗∗∗ 0.7165∗∗∗ 0.7267∗∗∗

(8.91) (8.46) (8.89)

Pr Fund Size -0.0258∗∗∗ -0.0317∗∗∗ -0.0307∗∗∗

(-3.79) (-3.84) (-4.31)

Pr Cash Pct 0.1064 -0.0129 0.1884
(0.45) (-0.06) (0.77)

Observations 84757 59376 70554
R Squared 0.09 0.09 0.09
Fund clusters 5,148 4,485 4,839
Time clusters 44 35 39
Est Method
Hansen J stat 1.98 0.00 0.81
J p value 0.1596 0.9588 0.3685
KP LM Stat 32.11 26.73 29.62
KP LM p value 0.0000 0.0000 0.0000
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Table IX: Results removing the financial crisis – portfolio returns
Portfolio return is the dependent variable, provided by Morningstar. Model 1 is the
baseline, taken from Model 2 of Table III, ranging from 1998 to 2009. Model 2 is the
same, but only including quarters from 1998 through the second quarter of 2007. Model
3 extends through the second quarter of 2008. Each panel variable is any open ended
fund holding a nonzero equity position. Network relation is the normalized dot product,
and peer effects are the weighted average of peer characteristics. Fund size is the log
of total net assets. Cash Pct is cash holdings divided by total net assets. Amihud is
the portfolio weighted sum of equity holdings’ Amihud measures computed over the
previous quarter. Market return is CRSP value weighted market return, and Category
Avg Flow is the average of all reported fund flows by Morningstar category. Time and
Fund Fixed Effects included. Hansen J stat is a test of overidentification for which the
null hypothesis is that instruments are uncorrelated with stage 2 regression, KP LM
stat tests the null of weak instruments. T statistics are in parentheses and significance
is denoted at the 1, 5, and 10% level.

(1) (2) (3)
Port Ret Port Ret Port Ret

Peer Flow 1.2641∗∗∗ 1.2432∗∗∗ 1.4065∗∗∗

(6.25) (6.90) (6.67)

Lag1 Flow -0.0026 -0.0008 -0.0029
(-0.71) (-0.17) (-0.72)

Lag2 Flow 0.0010 0.0003 -0.0003
(0.32) (0.07) (-0.08)

Lag1 Return -0.0614 -0.0655 -0.1129
(-0.91) (-0.90) (-1.58)

Lag2 Return -0.0868 -0.0284 -0.0039
(-1.47) (-0.44) (-0.06)

Market Return 0.7143∗∗∗ 0.6498∗∗∗ 1.0145∗∗∗

(3.86) (3.75) (9.09)

Fund Category Avg 0.2256∗∗∗ 0.2180∗∗∗ 0.2416∗∗∗

(5.98) (5.79) (6.51)

Amihud Illiq 0.0016∗∗ 0.0015∗∗ 0.0020∗∗∗

(2.48) (1.97) (2.68)

Cash Pct 0.0155 0.0043 0.0154∗

(1.64) (0.45) (1.71)

Fund Size -0.0039∗∗ -0.0055∗∗∗ -0.0046∗∗

(-2.48) (-2.83) (-2.55)

Pr Fund Size 0.0046 0.0035 -0.0013
(0.52) (0.31) (-0.13)
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(1) (2) (3)
Port Ret Port Ret Port Ret

Pr Cash Pct -0.6319 -0.4411 -0.9395∗

(-1.30) (-0.93) (-1.82)

Observations 84804 59420 70601
R Squared 0.17 0.14 0.24
Fund clusters 5,152 4,489 4,843
Time clusters 44 35 39
Est Method
Hansen J stat 1.71 1.11 0.03
J p value 0.1906 0.2926 0.8643
KP LM Stat 32.11 26.72 29.62
KP LM p value 0.0000 0.0000 0.0000
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Table X: Persistence of Network Distance Relation
Network relation is the normalized dot product, and is the dependent variable. Results
shown from Fama-MacBeth regression of eight lags of network connectivity. Data is
quarterly from 1998 to 2009 Significance is denoted at the 1, 5, and 10% level.

Coeff Estimate Std Dev T statistic

Lag 1 0.4138∗∗∗ 0.1255 3.2972
Lag 2 0.2500∗∗∗ 0.0830 3.0112
Lag 3 0.0765∗ 0.0454 1.6835
Lag 4 0.0851 0.0535 1.5918
Lag 5 0.0189 0.0395 0.4785
Lag 6 0.0407 0.0495 0.8222
Lag 7 0.0110 0.0392 0.2802
Lag 8 0.0460 0.0488 0.9418
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