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ABSTRACT

Many questions about mutual fund trading require daily holdings, yet mutual funds
are only required to report quarterly holdings. I model intraquarter trading and use
the genetic algorithm to estimate the trade pattern that is most consistent with the
fund’s daily reported returns. I validate the model empirically on a sample of insti-
tutional trades from Ancerno and I confirm that the method more accurately predicts
daily holdings when compared to existing naive assumptions. Further, my method is
substantially more accurate in classifying a fund’s tendency to supply liquidity, and
this increased precision has important implications for identifying superior perform-
ing funds. Specifically, a long-short strategy based on the model’s liquidity provision
measures earns significant abnormal returns, while a similar strategy that relies on
quarterly holdings does not exhibit any outperformance.
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1 Introduction

Mutual funds are required to report their equity holdings at a quarterly interval. These

filings have provided both investors and researchers with an invaluable source of information.

However, due to the quarterly frequency, it is not possible to know the exact timing of their

trades. As a result, it remains a challenge to address many important questions. For example,

does the fund tend to demand or supply liquidity? Does the fund make informed trades over

short-horizons or around major information events (e.g., earnings announcements)? Does

the fund engage in window dressing or portfolio pumping at the end of each quarter?

In order to study intra-quarter activity, many researchers have either made admittedly

näıve assumptions about the timing of trades based on filings, or have abstracted from the

stock level in favor of the fund’s observable daily returns. The main advantage at the stock

level is that analysis reflects actual trades that are observed in the quarterly filings; this

creates a trade-off in the lack of precision when measuring trade timing and adds noise to

any derived style measures since market conditions change throughout the quarter. Analysis

at the level of fund returns has the potential to capture additional features of trading style

related to timing, but suffers from an imprecise measure of actual trading.

Researchers have also made use of alternative datasets, such as Ancerno Ltd., in order

to measure precise actions of funds. While addressing the timing of intraquarter trades,

these data have several drawbacks relating to their limited coverage of funds as well as the

restriction of analysis to the fund family instead of the individual mutual funds. Similarly,

studies such as Campbell et al. (2009) and Ha and Hu (2017) have used Trade and Quote

(TAQ) data to infer daily institutional trading. Such approaches captures time-sensitive

characteristics of institutional trades in the overall market but are unable to isolate the

measurement to any given fund.

I use both the fund’s holdings and daily returns data to develop a holdings measure

for the days in between quarterly filings. The main assumption of the method is that

the fund’s daily returns must reflect the returns of its underlying holdings. Since all non-
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roundtrip equity trades are observable at the quarterly level, I estimate their precise timing

by modeling and comparing a large number of possible trade sequences and select the pattern

that is most consistent with the fund’s daily returns. I rely on the fact that stocks trade in

discrete quantities (i.e. stocks trade in units and not at infinitesimal increments). I assume

that the portfolio allocation at the start of the quarter changes toward that of quarter

end in discrete steps. Specifically, I assume that the manager breaks up each quarterly

trade into a finite number of pieces and trades each piece on a distinct day. This creates

a large combinatorial problem where many possible trade combinations exist. To compare

combinations, I reconstruct the daily returns of the fund’s portfolio under the hypothetical

trade pattern. Absent significant inflows, purchases must be funded by sales. I therefore

constrain the fund’s implied daily flows from trading in order to eliminate unfeasible trade

patterns. Using the genetic algorithm, I select the trade sequence that most closely replicates

the fund’s daily returns under the model’s constraints.

As an example, consider a hypothetical portfolio invested entirely in stock A at the start

of the quarter, and entirely in stock B by the end. Assuming that no other stocks are

transacted, the portfolio return on any given day is the sum of the returns to each stock

multiplied by their respective weights: Rp,t = wA,t×RA,t +wB,t×RB,t. While there are few

legal restrictions that prevent a manager from buying and selling back and forth between

stocks A and B, this is largely limited by trading costs. I therefore assume that each holding

changes monotonically within the quarter.1 If the initial holdings in A were 100 shares, and

the ultimate holdings in B were 40 shares, I could break the sale of A into 100 pieces and the

purchase of B into 40; the pieces can trade simultaneously. I could label each share in the

portfolio: A1, A2, ..., A100, B1, B2, ..., B40. If there are 60 trading days in the portfolio, there

are 60 possible days when stock A1 could be sold. Considering stocks A1 and A2, there are

602 possible combinations. For the entire portfolio over the quarter, there are 60140 possible

1Given the low dimensionality of this example, the daily trades could be solved analytically through a
system of equations. For large portfolios, the system would eventually become underdetermined and the
method would fail. By forcing trades to take place in discrete quantities, a solution can be found.
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combinations. Of course, many of these combinations are redundant since A1 and A2 are

identical. Given the high computational demands that this presents, I simplify the problem

by assuming that each quarterly trade is split into only four equal pieces: each piece of A is

25 shares and each piece of B is 10 shares. This reduces the number of possible combinations

in this example to 608. Since the trade sequences create different portfolios through time,

the sequences imply different portfolio returns on each day. I assume that the trade sequence

that best reproduces the fund’s daily returns is the most likely representation of the fund’s

actual trade pattern. To identify this sequence, I use the genetic algorithm to efficiently

search the set of hypothetical trade sequences and select the one with the closest fit on the

fund’s daily returns.2

I validate the method empirically using a sample of institutional trades from ANcerno

Ltd. Specifically, I infer holdings at quarterly intervals and apply the method to compare

the observable daily fund holdings with those estimated from the model. Compared to the

the standard assumption of end-of-quarter trades, the method reduces the mean squared

error (MSE) of dollar-weighted daily holdings by 73%.

As an application, I use the model to estimate the fund’s tendency to supply liquidity.

In this context, liquidity provision is the trading against short-term mispricing from non-

fundamental pressure (Nagel, 2012). The liquidity supplier provides immediacy at favorable

prices and realizes a profit as prices later reverse. Given the importance of timing, this trading

style is difficult to estimate with low frequency data. Jame (2018) develops a measure of the

fund’s tendency to supply liquidity based on short-term momentum trading and finds that

this predicts future returns among hedge funds. Using observable daily trades, I replicate

the momentum measure of Jame (2018) within the Ancerno sample and examine how well it

can be approximated using the algorithm-estimated trades. Compared to the benchmarks of

quarter-end trading and uniform trading across the quarter, the algorithm-estimated trades

2Given that the four pieces of a given quarterly trade are identical, there are several sequences that will
produce identical holdings and return patterns by symmetry. I accept the pattern selected by the algorithm,
which is an approximation and involves a stochastic process.
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yield a significantly stronger approximation of the liquidity provision measure.

After establishing validity within Ancerno, I extend my analysis to the broad sample

of mutual funds. I estimate the holdings in between filings, which are unobservable given

current disclosure requirements. I then replicate the trade-based liquidity provision measure

of Jame (2018) using the estimated intra-quarter trades. The main finding is that liquidity

provision is a strong predictor of future fund performance. A portfolio long funds in the

bottom quintile and short funds in the top quintile of momentum over the past two quarters

produces an annualized abnormal return of 1.9%. This finding is robust to the inclusion

of the traded liquidity provision factor of Rinne and Suominen (2014), indicating that the

measure provides incremental information in the classification of the fund’s liquidity demand.

This paper makes two contributions to the finance literature. First, I develop a measure

of daily holdings using the quarterly holdings and daily returns data that is widely available

to academic researchers. I show that this is a more accurate approximation of the fund’s in-

traquarter trading than existing alternatives. My method can be applied towards additional

topics that require shorter frequency trade data among mutual funds. Second, by estimat-

ing trades at a daily level, I measure the fund’s tendency to trade against short term price

reversals. I show that this measure predicts future fund performance. This compliments a

growing literature that links liquidity provision with fund performance (Franzoni and Plazzi,

2013; Jame, 2018; Rinne and Suominen, 2014). Finally, I show that the relation between

liquidity provision and future returns is not anticipated by investors in the form of flows.

The rest of the paper is organized as follows: Section 2 outlines the method for estimating

intraquarter holdings and trading. In Section 3, I validate the model using the Ancerno

sample of institutional trades. Section 4 applies the methodology to available sample of US

active mutual funds. Section 5 concludes.
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2 Intraquarter Holdings

Traditional methods of analyzing mutual fund trading have relied on measures derived

from holdings and returns data separately. Holdings measures directly reflect portfolio hold-

ings and are better at capturing investment styles (Daniel et al., 1997). On the other

hand, meaningful activity takes place in between filings, producing a persistent “return gap”

Kacperczyk et al. (2006). To examine additional aspects of trading, albeit without the preci-

sion of holdings data, many studies have relied solely on returns data (Carhart, 1997; Fama

and French, 2010).

In this section, I develop an approach to estimate the fund’s daily holdings using daily

returns data for both the underlying holdings and the fund itself. As a starting point, Kacper-

czyk et al. (2006) approach these data jointly in their “return gap” measure. Specifically,

they consider the returns to a hypothetical portfolio that holds the fund’s initial holdings

without trading and compare its returns to the those of the actual fund. My method attempts

to reproduce the fund’s daily returns by selecting the timing of the trades that are observed

in quarterly filings. Since the fund’s daily returns must reflect their underlying holdings, the

trading pattern that best reproduces its returns is likely an informative estimate of daily

holdings.

2.1 Model Assumptions

If the fund’s holdings were known throughout the quarter, its daily returns could be

closely inferred from the underlying security prices. Instead, the holdings are revealed only

at quarter-end and the interim portfolio composition is unobservable. Depending on one’s

assumptions, there could exist an infinite set of possible trade sequences available to a fund

manager that would, ex-post, produce identical portfolios observed in the quarterly filings.

With zero trading costs and fractional share holdings, it would be possible to take on any

imaginable portfolio allocation at any point within the quarter and then fall upon a particular
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allocation at the time of disclosure. This has posed a challenge for the study of mutual funds,

resulting in a “black-box” approach to intraquarter holdings.

In order to create a tractable problem, I put forward three assumptions of intraquarter

trading that bound the relevant set of possible actions available to the manager: (1) shares

trade in discrete quantities, (2) the incremental effect of round-trip trades is uncorrelated

with portfolio returns, and (3) all trades take place at the day’s closing price. Assumption

(1) is true since shares are typically traded in units greater than 1. Assumptions (2) and (3)

may not be absolutely true, but serve as reasonable approximations. For instance, mutual

funds typically do not exhibit trading skill (Fama and French, 2010). As a result, the

incremental effect of round trip trades on portfolio returns can reasonably be assumed to

be noise. In addition, the majority of institutional trading takes place at the end of the

trading day (Corrie Driebusch, 2018); for this reason I assume all trades are executed at the

day’s closing price. Of course, the degree to which these assumptions deviate from reality

will impact the accuracy of the model’s predictions. This is an empirical question, which I

address later in this paper.

Assumptions (1) and (2) dramatically reduce the possible holdings that the fund can

take on within the quarter. Given discrete trades and by neglecting round trip trades, the

holdings are assumed to move monotonically in discrete steps over the quarter. Assumption

(3) specifies the execution prices and ties the daily holdings to the daily returns of the fund.

Taken together, the three assumptions reduce the problem to a finite set of possible trades

sequences that can be compared objectively to one another based on how well they reproduce

the fund’s daily returns.

To formalize this problem, I consider the returns to the fund’s portfolio on any given day:

Rt,F =
N∑
i=1

Ri,t × wi,t, (1)

where Rt,F is the fund return on day t; Ri,t and wi,t are the returns and weights to each stock
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i on day t. Since I assume that all trades takes place at the end of the day, the portfolio

weights are determined by the holdings on the previous day:

wit =
Si,t−1 × Pi,t−1∑N
i=1 Si,t−1 × Pi,t−1

, (2)

where Si,t−1 and Pi,t−1 represent the number of shares held and the closing price of a given

stock on day t-1. On any given day, Si,t is equal to the number of shares held at the start of

the quarter, plus the cumulative share purchases from days 0 to t:

Si,t = Si,0 +
t∑

d=1

∆Si,d (3)

Combining equations (1), (2), and (3), the fund’s return on a given day can be approximated

by:

Rt,F ≈
N∑
i=1

Ri,t ×
(
Si,0 +

∑t−1
d=1 ∆Si,d

)
× Pi,t−1∑N

i=1

(
Si,0 +

∑t−1
d=1 ∆Si,d × Pi,t−1

) = Rt,M . (4)

Rt,M is the return to the modeled portfolio on day t. I rely on my prior assumptions in order

to put restrictions on ∆Si,d. First, I restrict the number of shares traded to be integers less

than or equal to the total number of shares traded within the quarter, ∆Si:

∆Si,d ∈ {1, 2, 3, . . . ,∆Si}, (5)

and

∆Si = Si,T − Si,0, (6)

where subscripts 0 and T designate the start and end dates of the quarterly holding period.

Next, for each stock, the total of daily trades must equal the difference in trades observed

in the filings:

∆Si =
T∑
d=1

∆Si,d (7)

The assumption that round-trip trades can be ignored implies that the modeled trades will
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move the holdings of a given stock monotonically throughout the quarter. This further

implies that for each stock, the absolute value of the total shares traded equals the sum of

the absolute value of each daily trade:

|∆Si| =
T∑
d=1

|∆Si,d|. (8)

The objective is to select the trade sequence most consistent with the available data and

the model assumptions. I formulate an optimization problem where the difference between

the modeled and the true fund returns are minimized throughout the quarter. Specifically, I

minimize the sum of the squared deviations of the modeled and true portfolios by selecting

different values of each ∆Si,d:

min
S1,1...SN,T

T∑
t=1

(
Rt,F −

N∑
i=1

Ri,t ×
(
Si,0 +

∑t−1
d=1 ∆Si,d

)
× Pi,t−1∑N

i=1

(
Si,0 +

∑t−1
d=1 ∆Si,d

)
× Pi,t−1

)2

(9)

subject to the constraints described in equations (5) and (8).

An analytical approach to this minimization problem is not possible: the objective func-

tion itself does not have a unique minimum without simultaneously considering the two

constraints. Instead, this can be approached as a combinatorial optimization problem: I

select the best sequence among the finite set of possible alternatives.

2.2 Selecting the Optimal Trade Sequence

The minimization problem requires the selection of the trading sequence that minimizes

the sum of squared differences between the modeled and the true portfolio’s daily returns.

Given the constraints, there exists a finite set of sequences, however this set is very large.

Consider an additional simplification that the fund trades each stock only once throughout

the quarter. This effectively forces all but one ∆Si,d for each stock equal to zero, with a

single value of ∆Si,d set to ∆Si. This reduces the dimensionality of the problem substantially.

8



Instead of having N ×T decision variables, we are left with N choices: one for each stock in

the portfolio. Furthermore, we can reformulate the choice variable, not as the value of ∆Si,d

on any given day, but instead select which day in the quarter, ki, the holdings of a given

stock move from Si,0 to Si,T . With this assumption, I redefine the value of each Si,ki,t as a

function of S0, S1, t, and choice variable ki:

Si,k,t =

 Si,0 t < ki

Si,T t ≥ ki

ki ∈ {1, 2, 3, . . . , T} (10)

This redefinition effectively embeds the constraints into the objective function, yielding

a simplified problem:

min
k1...kN

T∑
t=1

(
Rt,F −

N∑
i=1

Ri,t ×
Si,ki,t−1 × Pi,t−1∑N
i=1 Si,ki,t−1 × Pi,t−1

)2

(11)

This combinatiorial problem remains non-trivial: for a portfolio of 75 stocks in a quarter

of 60 trading days, there are more than 2× 10133 different possible trade sequences.3 This is

larger than the estimated number of atoms in the universe, by many orders of magnitude.

2.2.1 Relaxing the Assumption of a Single Trade per Quarter

The assumption of a single trade per stock per quarter is likely overrestrictive, given that

institutional trades are typically spread over time (Barclay and Warner, 1993). In order to

allow for multiple trades on a given stock, I split the fund’s holdings of each stock into four

equal portions. The algorithm treats each portion of a holding as an individual stock and

selects the trade date for each portion independently. For example, if a fund purchased 100

shares of a given stock in a quarter, I break the quarterly trade into four distinct trades of

25 shares. The algorithm then selects the purchase date for each bundle of 25 shares that

3There are T possibilities for each stock. The total possible sequences is TN .
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is most consistent with the model. Once a solution is found, I recombine the individual

portions of each stock to calculate the daily holdings of the stock within the fund’s portfolio.

2.2.2 Implied Daily Fund Flows

When combined, the fund’s returns and holdings imply a daily level of fund flows, given

the model’s assumption that the portfolio is invested entirely in equities. To improve the

selection mechanism, I impose a restriction against solutions that imply infeasible daily fund

flows. Assuming that the total assets are equal to the sum of shares multiplied by their

respective prices, it can be shown that the model’s implied flows on day t are equal to:

flowt =

∑N
i=1 Si,t × Pi,t −

(∑N
i=1 Si,t−1 × Pi,t−1

)
× (1 +Rt,F )∑N

i=1 Si,t−1 × Pi,t−1
. (12)

Given that daily fund flows are typically small and to allow for coarseness in the modeled

trades, I add a penalty of -0.01 to the fitness function for each day that implied flows

exceed 2.5%. A penalty function is a technique to add constraints when bounding the set of

acceptable solutions (Yeniay, 2005). The penalty has to be large enough that the algorithm

heavily disfavors solutions that violate the constraint. With the constraint, the problem

becomes:

min
k1...kN

T∑
t=1

(Rt,F −
N∑
i=1

Ri,t ×
Si,ki,t−1 × Pi,t−1∑N
i=1 Si,ki,t−1 × Pi,t−1

)2

+ 0.01Vt

 , (13)

where Vt is an indicator variable equal to 1 if the implied flows constraint is violated and

zero otherwise. I minimize the function in (13) by selecting values of (k1, . . . , kN) according

to the genetic algorithm.

2.3 The Genetic Algorithm

The genetic algorithm is a biologically inspired procedure used to optimize complex dis-

crete mathematical problems. The link to biology is an analogy that compares the decision

10



variables to a chain of DNA with genetic information. The algorithm selects the optimal

solution over numerous generations based upon the principles of Darwinian evolution: the

fit reproduce while the remaining candidates are discarded (McCall, 2004). In the context

of a mathematical problem, the fitness of a candidate solution is equal to the evaluation

of the objective function. I transform the minimization into a maximization problem by

multiplying the objective function by negative 1.

For each fund and quarter, I begin with a population of randomly generated candidate

solutions. For each candidate, I evaluate its fitness based on equation (13). Each candidate

solution is then ranked according to its fitness. Those with the highest fitness are selected

with greater probability for replication. Within the replication group, solutions are paired

at random to create child solutions for the next generation. For each solution variable,

the child takes on a value selected from either parent at random, with a small number of

values perturbed by a random mutation. This procedure is repeated for a large number of

generations, converging to a solution.

To implement the genetic algorithm, I select values for the hyperparameters. I use trial

and error in order to optimize performance along computational speed and convergence

to a solution, however, I do not measure the quality of the solutions in the selection of

hyperparameters.4 I generate an initial population of 7,500 random candidate solutions for

the first generation. After computing the fitness of each candidate, I select the top 1,200

with an additional 300 solutions at random to form the replication group of 1,500. From

this group, each randomly matched solution pair creates 10 child solutions. This results in a

stable population size of 7,500 each generation. Within each candidate solution, each choice

variable (ki), has a 1% chance of mutation, where the value is changed to a random integer

4The genetric algorithm is a stochastic optimization technique, which causes final solutions to vary from
one another even with the same initial conditions. Solutions in this context are in fact only approximations.
Selecting a large population slows down the total computation speed, however a small population may not
contain sufficient information to converge to the optimal solution. Techniques exist for hyperparameter
optimization, see Bergstra and Bengio (2012) for example. While this would improve the model fit, it would
require additional cross-validation tests. Further, it is not guaranteed that the hyperparameters would be
optimal for use on the broader mutual fund data (S12 and daily returns).

11



between 1 and T. After repeating the procedure for 300 generations, I select the solution

with the highest fitness.

3 Model Validation with Trade Level Data

The model relies on several assumptions designed to approximate the fund’s daily trading.

In this section, I examine the validity of the model empirically using a sample of institutional

equity trades from ANcerno Ltd. (formerly the Abel Noser Corporation). The sample

contains detailed trade information including the transaction price, the direction of the

trade, and the day on which the trade took place. This offers an ideal setting to validate the

model since the typically unobservable data are disclosed. ANcerno records trades at the

manager level on behalf of their specific clients and this data became availabe to researchers

for years 1999-2011. I consider the manager-client pair as a unique fund for the purpose of

the analysis.5

Similar to Jame (2018), Puckett and Yan (2011) and other studies that use ANcerno data,

I aggregate each fund’s trades over its first 36 months in the sample, creating a measure of

daily holdings. In order to avoid funds that do not trade frequently, each fund must make at

least one trade each month to remain in the sample. I then remove positions less than zero

and merge with the CRSP daily securities file based on the CUSIP and day for each stock.

I compute daily returns for the fund based on the daily holdings, daily trades, execution

prices, and the daily closing price of each stock. This yields a sample of daily holdings and

returns for institutional funds trading US equities. For quarterly holdings measures, I record

the holdings as of the quarter end dates: December 31, March 31, June 30, and September

30.

5The funds in this sample are actual institutional investors, however all trades need not be executed by
mutual funds. For example, several studies Jame (2018); Puckett and Yan (2011); Cohen et al. (2016) have
used Ancerno outside of the mutual fund context.
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3.1 Empirical Validation

I use the genetic algorithm to minimize equation (13) for each fund-quarter in order to find

the dynamic portfolio that best replicates fund’s observed daily returns. For ease of interpre-

tation, I refer to the fitness of the function as the evaluation of equation (13) multiplied by -1.

This allows for higher values of fitness to be interpreted as a greater fit on the data. Figure

1 plots the histogram of fitness values for the sample of funds in Ancerno. Since a fitness of

zero would indicate a perfect fit, the distribution is truncated on the right. The distribution

is therefore negatively skewed with a mean (median) fitness value of -0.020 (-0.007).

To measure the model’s goodness-of-fit on the daily holdings, I estimate each individual

fund’s portfolio allocation within each quarter in the ANcerno sample and compare this with

its observed allocation. At the end of each day, I calculate the dollar-weighted error between

the modeled and the true portfolio allocation:

Errort =
N∑
i=1

(
(Si,t,M − Si,t,O)× Pi,t

TNAt

)2

, (14)

where Si,t,M and Si,t,O represent the modeled and the observed number of shares of stock i

held by the fund on day t. TNAt is the total net assets of the fund on day t. I calculate

total net assets as the total value of all equity holdings at the end of day t. To measure

the overall fit, I calculate the mean square error (MSE) of the dollar weighted allocation by

taking an equal weighted average of each Errort throughout the quarter:

MSE =
1

T

T∑
t=1

Errort. (15)

I compare the model with alternative assumptions of intraquarter holdings. The path

of each Si,t,T throughout the quarter is nonlinear, which invalidates linear regressions and

the commonly used R-squared as a metric for goodness-of-fit (Spiess and Neumeyer, 2010).

To evaluate the model’s performance, I compare its MSE with that of four alternative as-
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sumptions: trades that take place at the beginning, middle, end, or that take place evenly

throughout the quarter.

Table 1 presents the average MSE for the model and the alternative assumptions. Directly

comparing the average MSE among alternatives is uninformative, given the skewness in both

the fitness and the MSE distributions. In column (2), I calculate the average ratio of the

model’s MSE (MSEmodel) to the alternative. The average ratio ranges from 0.23 for the

assumption that trades take place at the end-of-quarter to 0.79 for the portfolio that trades

evenly throughout the quarter. To verify that the ratios are statistically less than 1, I apply

a t-test on the log of the ratio. In each case, the log-transformed value is less than zero,

statistically significant at the 1% level. Overall, this indicates that the modeled portfolio

holdings approximate the true portfolio’s intra-quarter holdings better than the existing

alternatives.

3.1.1 Regressions: Model Fitness and Holdings MSE

The central assumption of the model is that the trade pattern that best replicates the

fund’s daily returns also contains information about the true underlying holdings within the

quarter. To confirm that the fit of the model in equation (13) corresponds with a stronger

prediction of holdings, I investigate the relation between fitness and the quarter’s holdings

MSE. Intuitively, fund-quarters with a greater algorithm fitness should have a better fit on

the daily holdings. To test this, I regress the MSE of the holdings onto the fitness of the

modeled portfolio:

ln(MSEholdings) = α + β × ln(fitnessmodel) + γ′Controls+ ε. (16)

To account for mechanical relations explained by fund characteristics, I include controls

for the number of stocks in the portfolio, the total net assets of the fund, the ratio of stocks

traded to total stocks in the portfolio, as well as fund and quarter fixed effects. All continuous
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variables are log transformed in order to measure elasticities.6 Given the potential of residual

correlation across fund and time (Petersen, 2009), standard errors are clustered at the fund

and quarter. Table 2 presents the regression results of equation (16). A 1% increase in

fitness coincides with an estimated reduction in the MSE of approximately 0.4%. Overall,

this indicates that the strength of the model’s fitness corresponds with its ability to predict

holdings in between quarterly filings.

Next, I verify that the fitness of the algorithm estimate corresponds with an improved

measure of intraquarter holdings relative to alternative assumptions. In Panel B, I replace

model MSE on the left hand side of equation (16) with the ratio of the model MSE over

the MSE from the next best alternative, the evenly traded portfolio. The coefficient β can

be interpreted as the marginal improvement in the estimate of intraquarter holdings relative

to the. A 1% increase in fitness coincides with an estimated reduction in the MSE ratio by

approximately 0.08%.

3.1.2 Liquidity Provision in the Ancerno Sample

As an addition test, I verify that the modelled trades indicate a similar liquidity provision

trading style when compared with the actual trades in ANcerno. In this context, liquidity

provision is the trading against short-term mispricing from non-fundamental pressure (Nagel,

2012). The liquidity supplier provides immediacy at favorable prices and realizes a return

as prices later reverse.

To estimate the fund’s tendency to supply liquidity, I use the trade-based momentum

measure of Jame (2018). For each stock on each day, the previous one-day and five-day

market-adjusted returns are calculated. The momentum measure, Mom1&5, is defined as the

average of the 1 and 5 days market-adjusted returns. Since non-fundamental price movement

causes reversals, liquidity supplying trades are defined as purchases (sales) in stocks that

have decreased (increased) in price over the recent past. At the fund level, the momentum

6Since the domain of fitness is (−∞, 0], I use the following transformation: −log(−fitness).
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measure is calculated quarterly by taking the dollar-volume weighted average Mom1&5 of

stocks purchased minus the dollar-volume weighted average of stocks sold. Funds with higher

(lower) levels of momentum trading are defined as liquidity demanders (suppliers) since they

suffer (benefit) from the price subsequent reversals in their trades.

Table 3 presents the correlation matrix between the momentum measure estimated

on the observed daily trades (Mom1&5), the algorithm (Mom1&5calc), the evenly traded

(Mom1&5smooth), and the quarterly momentum measure of Jame (2018) (Mom1&5Q). The

last two measures are almost identical as they both assume trading is equally likely within

the quarter.7 Among the approximations of the momentum measure from observed daily

trades (Mom1&5), the algorithm-calculated measure has the highest correlation value of

0.76. This suggests that the daily estimated trades are informative for estimating trading

style.

Next, I compare the measures in a multivariate setting. Since Mom1&5Q andMom1&5smooth

are almost perfectly correlated (r = 0.98), I omit Mom1&5smooth. Standardizing the vari-

ables to be mean zero and standard deviation of one, I regress the momentum measure from

observed daily trades (Mom1&5) onto the momentum measure from the estimated daily

trades (Mom1&5calc) and the quarterly momentum measure (Mom1&5Q). Table 3, Panel

B presents the results. Both coefficients are positive and statistically significant; however,

the algorithm calculated measure is stronger with a coefficient of 0.51 compared to 0.19

for Mom1&5Q. An F-test rejects the null hypothesis that the coefficients are equal. This

suggests that the estimated daily trades provide a stronger approximation of the derived

momentum trading style measure than alternative existing assumptions.

7Mom1&5Q is calculated as if the trade takes place on the last day of the quarter and evenly weighs
Mom1&5 throughout the quarter. This produces a slightly different measure from the evenly traded as-
sumption. The evenly traded pattern is calculated as if the trades take place evenly throughout the quarter
and Mom1&5 is averaged accordingly. The difference between the two measures come from intraquarter
variation in stock prices and portfolio weights.
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4 Application: US Active Mutual Funds 2002-2016

In the previous section, I used a sample of observable institutional trades to demonstrate

that the model provides an improved estimate of both intraquarter holdings and a derived

measure of liquidity provision style. In this section, I apply the methodology to the sample of

US active mutual funds from 2002-2016, in line with when funds consistently began reporting

their holdings quarterly.8 The precise estimate of intraquarter holdings enables a trade-based

measure of liquidity provision previously unavailable to mutual funds. I use this measure to

show the predictive relation between fund liquidity provision on future returns.

4.1 Mutual Fund Data and Methodology

Mutual fund holdings data come from the Thomson Reuters S12 file. Daily fund returns

and NAV data, as well as quarterly reported fund characteristics are drawn from the Center

for Research in Security Prices (CRSP). I aggregate returns and holdings to the fund level

and use MFLINKS to merge the two databases. Following Jordan and Riley (2016), I apply

several screens to ensure that the funds are actively managed and invested primarily in

domestic equities: funds must not be identified as index funds, ETFs, or annuities. An

additional screen for terms within the fund name is applied to remove funds not primarily

invested in U.S. equities. I restrict the sample to funds with a minimum of 90% in equities

and a maxiumum of 10% in cash.

In order to ensure that the data is reliable, I follow Coval and Stafford (2007) and impose

several restrictions: quarterly flows must be between −50% and 200% and total net assets

must have been less than $1 billion in the past. In addition, I require that the ratio of TNA

between the two databases not exceed 1.1 (or fall below 1/1.1) and the fund must have at

least 20 holdings.

8Prior to this, most funds reported semi-annually. Quarterly holdings disclosures were mandated only at
the fund family level through the 13-F filings.
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For each fund-quarter, I estimate intraquarter holdings by finding the trade pattern that

is most consistent with the fund’s observed daily returns. Since returns are reported for the

entire fund, including cash holdings, I divide the reported daily return by the one minus the

fraction of the fund’s cash holdings:

Rt,F =
Rt,F,reported

(1−%Cash)
(17)

This transformation offsets the effects of the cash drag on the estimate of the fund’s equity

portfolio returns. Funds hold cash for a variety of reasons particularly to meet redemptions,

especially when flows are volatile (Chordia, 1996; Yan, 2006). Given that cash needs can

vary throughout the quarter, I add the percentage of cash holdings to the model. I replace

Rt,F in equation (13) with the right hand side of equation (17):

min
k1...kN ,%Cash

T∑
t=1

( Rt,F,reported

(1−%Cash)
−

N∑
i=1

Ri,t ×
Si,k,t−1 × Pi,t−1∑N
i=1 Si,k,t−1 × Pi,t−1

)2

+ 0.01Vt

 , (18)

Since this remains an discrete problem, I restrict the estimation of the portfolio invested in

cash, %Cash, to integers between 1 and 10 percent. This approximation could be relaxed to

allow for smaller intervals and added precision, however I must trade off precision for com-

putational resources.9 This reflects the method’s major trade-off: I accept an approximation

in order to create a problem that can be solved.

4.2 Liquidity Provision of Active Mutual Funds

In order to estimate the daily trades of US active mutual funds, I minimize equation (18)

using the genetic algorithm. To reduce noise in the estimates, I restrict the sample to funds

9For example, allowing the average cash holdings to vary at intervals of 0.5% would increase the precision
of the final estimates, however this would require greater resources. In addition, the selection the optimal
interval is an additional optimization problem in and of itself.
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with a fitness value greater than -0.15.10 Based on the trades, I repeat the analysis from

section 3.1.2 and calculate the fund’s momentum trading measure each quarter.

Table 4, Panel A presents summary statistics for the final sample of 64,480 fund-quarters.

The mean Mom1&5 estimates are positive indicating that, on average, mutual funds demand

liquidity. This is consistent with Rinne and Suominen (2014) and the negative average value

for βRLP . Panel B presents the correlation matrix: Mom1&5calc and Mom1&5Q are are

highly correlated (r = 0.51), consistent with their relation estimated within the Ancerno

sample (r = 0.58) in Table 3. The two measures are negatively correlated with βRLP by

design: higher values of momentum are consistent with liquidity demand, whereas higher

values for βRLP are consistent with a greater exposure to the priced liquidity provision factor

of Rinne and Suominen (2014). Overall, this suggests that Mom1&5calc shares information

about the fund’s tendency to supply liquidity with the existing regression-based measure,

however the measures capture different aspects of this style given the modest correlation

coefficient of -0.06.

To examine the persistence of the fund’s tendency to supply liquidity, I sort the funds

into quintiles each quarter based upon their level of Mom1&5calc over the prior two quarters.

If a fund follows a consistent liquidity trading style, the quintiles averages should preserve a

similar ordering of Mom1&5calc. Figure 2 presents the average level of Mom1&5calc based

upon the prior two quarter quintile sorts. The monotonic increase in the average level

of Mom1&5calc suggests that past estimates of the fund’s tendency tend to predict future

liquidity demand.

Given the measure’s persistence, I investigate the relation between the momentum trading

and future fund returns. In Figure 3, I compare the fund returns from quintile sorts based the

previous two quarters’ Mom1&5calc. There is a pattern associating greater liquidity provision

(low Mom1&5calc) with higher performance: average returns decrease almost monotonically

10Fitness is defined as previously: the objective function (equation 18) multiplied by negative 1. Restricting
funds to fitness greater than -0.15 eliminates 33,907 fund-quarters. Lowering the fitness threshold produces
qualitatively similar results.
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from the top quintile (3.2 bps) to the bottom quintile (-9.3 bps). Taken together, the

univariate evidence in Figures (2) and (3) suggests that liquidity provision is persistent over

time and this can be used to predict future returns. Next, I turn to a multivariate regression

setting to investigate whether the measure can predict abnormal returns.

4.2.1 Liquidity Provision and Abnormal Returns

To test whether the momentum factor is associated with future abnormal returns, I use

the quintile sorted portfolios based upon the prior two quarters’ Mom1&5calc. I create a

new portfolio that is long the portfolio of quintile 5 and short that of quintile 1, rebalancing

every month for the length of the time series. I regress the portfolio returns Rq5−q1 onto the

Fama-French 4-factor model, augmented by the RLP liquidity provision factor of Rinne and

Suominen (2014).

Table 5 presents the regression results. In specification (1) , there is at -16 basis point

abnormal return to the long minus short portfolio. This result indicates that high momentum

funds significantly underperform on a risk-adjusted basis when compared to low momentum

funds. To examine how an individual can more profitably invest with this information, I

estimate the abnormal returns for the low and the high momentum portfolio separately.

The low portfolio, presented in specification (2), has an alpha of -6 basis points, which

is statistically indistinguishable from zero. The portfolio formed from the funds with the

highest values of momentum underperform with an alpha of -16.64 basis points. This suggests

that the difference in abnormal returns comes from the most liquidity demanding quintile.

An investor can receive higher returns simply by avoiding the most liquidity demanding

funds in terms of Mom1&5calc.

4.2.2 Liquidity Provision and Cross-sectional Fund Returns

To test whether the fund’s liquidity provision style predicts future cross-sectional returns,

I estimate 165 monthly Fama-Macbeth (1973) regressions. Specifically, each month I regress
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fund excess returns onto measures of liquidity provision with common control variables in

the mutual fund literature:

R−Rf = α + β × Liquidity Provision+ γ′Controls+ ε. (19)

Standard errors are corrected for potential time-series dependence using the Newey-West

(1987) procedure. Liquidity provision measures, Mom1&5calc, Mom1&5end, Mom1&5Q,

and βRLP are standardized to have zero mean and unit standard deviation. Mom1&5calc

and Mom1&5Q are averaged over the past two quarters; βRLP is estimated over the past

two years using monthly returns data (Rinne and Suominen, 2014) and is rank transformed.

Control variables include expenses, turnover, cash, fund age, total net assets, and percent

flows. All controls are expressed as percentages, except for TNA and fund age, which are

by transformed the natural logarithm. All controls are lagged by one quarter, except fund

flows, which are lagged by one, two, and three months.

Table 6 presents the regression results. Specification (1) through (5) do not include

fixed effects; specification (6) includes fund style fixed effects based upon CRSP style codes.

Overall, the results are consistent with liquidity suppliers achieving higher returns in the

cross-section. A one standard deviation decrease in Mom1&5calc is associated with an esti-

mated marginal increase in excess returns between 4.4 and 5.9 basis points. In specification

(6), with all the control variables, the marginal effect is 5.9 basis points in absolute terms.

Momentum measures based on solely quarterly data, Mom1&5Q and Mom1&5end, do not

predict future returns with statistical significance. The coefficient on the rank transformed

βRLP is positive but not statistically significant. Overall, this evidence suggests that the

daily holdings-based liquidity provision measure is associated with future fund excess re-

turns, controlling for a variety of factors. This prediction is incremental above the existing

regression based measure.
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4.2.3 Liquidity Provision and Fund Flows

I examine whether investors anticipate future fund performance from liquidity provi-

sion. Investors typically reward funds for outperforming benchmarks with greater inflows

(Del Guercio and Tkac, 2002; Ivković and Weisbenner, 2009; Sirri and Tufano, 1998), how-

ever there has been mixed evidence on whether this predicts future returns (Frazzini and

Lamont, 2008; Zheng, 1999). If investors recognize the fund’s tendency to supply liquidity

and its relation with future returns, the momentum measure could capture future fund flows.

To test this relation, I run a panel regression of monthly flows onto mom1&5calc:

flowt = β0 + β1 ×mom1&5calc + γ′Controls+ ε. (20)

Controls follow Del Guercio and Tkac (2002) and include: an indicator for outperforming

the S&P 500, lagged excess returns (separated above and below the S&P 500), Jensen’s

alpha (separated above and below the S&P 500), and the tracking error (separated above

and below the Jensen’s alpha above the lagged excess returns above the S&P 500), fund age,

TNA, lagged flow, and year × style dummies. Overall these measures control for the fund

flows that result from performance without an explicit recognition of liquidity provision.

Table 7 presents the regression results. The first column’s measure of flows is in millions

of dollars; the second column uses a percent flow expressed as fraction between 0 and 1.

Overall, investors reward performance: lagged excess returns and Jensen’s alpha are strongly

associated with inflows. In addition investors react differently to diversifiable risk, measured

with tracking error, depending on the state of performance. A one percent increase in

tracking error is associated with a 0.5% inflow when performance is above the S&P 500,

however this is associated with a 2.1% outflow when the fund underperforms the benchmark.

The variable of interest, mom1&5calc , has a small estimated effect on flows and is statis-

tically indistinguishable from zero. The 95% confidence interval for the marginal effect of a

one standard deviation of mom1&5calc on the percent flows is between -0.004% and 0.004%.
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Given how closely the confidence interval straddles zero, the relationship between liquidity

provision and future fund flows is very modest if it exists at all. This suggests that investors

investors tend not to respond very strongly to the fund’s liquidity provision style.

5 Conclusions

This paper develops a method to estimate mutual fund positions in between mandated

filings using the fund’s daily returns and its quarterly holdings. Using a sample of observable

institutional trading, I show that the method yields an improved estimate of both intraquar-

ter trading and a trade-based liquidity provision measure versus existing näıve assumptions.

I apply the method to the broad sample of mutual funds from 2002 to 2016. Using the

estimated daily holdings, I show that the fund’s tendency to supply liquidity is persistent

over time and that this characteristic predicts future abnormal returns.

The main methodological contribution of this paper is the synthesis of both observable

fund characteristics, individual stock level data, and known economic relationships, such as

the definition of a portfolio return, into a single measure of daily holdings. This provides

two clear advantages: (1) by construction, the measure contains more information than its

components taken separately and (2) the measure reflects actual trades which facilitates

interpretation and applicability to various problems. This is particularly useful for a trading

style measure such as liquidity provision: the momentum measure can be estimated with a

single quarter of data using trades that are observed at the quarterly level.

The model can be extended to consider more data that are commonly available in financial

research. For example, the total trading volume of a given stock could be used in the

model with all mutual fund trading estimated simultaneously over a single quarter. This for

example, could bound the selection space and improve the accuracy of the predictions. A

separate improvement could involve machine learning over the limited existing daily trade

data in order to uncover empirical regularities in mutual fund trading.
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Finally, the methodology outlined in this paper can be applied to a range of topics

surrounding mutual fund behavior and performance. The estimated daily holdings could

be used to measure various aspects of trading such as investor externalities and agency

costs. For instance, Kacperczyk et al. (2006) find that unobservable actions consistently

predict fund performance. Aside from the liquidity provision style, future research could

uncover additional trading characteristics with the estimated daily holdings, such as portfolio

pumping, window dressing, and informed trading over short-horizons.
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Table 1: Intraquarter Holdings MSE

Panel A presents the summary statistics for the mean squared error (MSE) of holdings estimated by several
assumptions of trading. GA uses the genetic algorithm to optimize the holdings model developed in this
paper. Start, Middle, and End assume that all trades take place on the first, middle, or last day of the
quarter respectively. Smooth assumes that the trades take place evenly. For readability, values are scaled
by 104. Panel B presents summary statistics for the ratio of MSE for Start, Middle, and End divided to the
MSE from the model (GA). The rightmost column contains the p-values for a t-test of whether the log ratio
is equal to zero. This tests the null-hypothesis that the ratio is equal to 1. The portfolio allocation error
and quarterly MSE are calculated as follows:

Errort =
∑N
i=1

(
(Si,t,M−Si,t,O)×Pi,t

TNAt

)2
; MSE =

1

T

∑T
t=1Errort.

Panel A

Mean Std. Dev. Min Max

GA 8.970 35.700 0.001 296.930
Start 53.980 208.510 0.007 1739.000
Middle 28.020 107.940 0.003 859.940
End 59.250 223.240 0.006 1739.600
Smooth 17.660 70.290 0.002 584.890
*Values scaled (×104)

Panel B

Mean Std. Dev. Min Max P-Value
(Ratio 6= 1)

GA/Start 0.255 0.574 0.002 28.076 0.0000
GA/Middle 0.486 0.348 0.003 6.797 0.0000
GA/End 0.227 0.193 0.002 3.704 0.0000
GA/Smooth 0.781 0.439 0.005 4.863 0.0000
Observations 2693
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Table 2: Regressions of Holdings MSE on Model Fitness

In Panel A, I regress the intraquarter holdings MSE from the model, estimated with the genetic algorithm,
MSEga, onto the model’s fitnes, the number of stocks, the number of stocks traded, and the TNA of the
fund. In Panel B, I replace MSEcalc with the ratio of MSEga to the error of the next best alternative
assumption, MSEsmooth. All variables are log transformed. Numbers in parentheses are two-way clustered
standard errors. *, **, *** denote significance at the 10, 5, and 1% level respectively.

Panel A

ln(MSEcalc)

ln(fitness) -0.420*** -0.432*** -0.431*** -0.405*** -0.411***
(0.041) (0.044) (0.040) (0.044) (0.044)

ln(stocks) -0.714*** -0.330***
(0.119) (0.103)

ln(trade) -0.125 -0.550
(0.566) (0.544)

ln(tna) -0.755*** -0.559***
(0.120) (0.119)

Fund & Quarter FE Yes Yes Yes Yes Yes

Observations 2,604 2,604 2,604 2,604 2,604
R2 0.800 0.819 0.806 0.823 0.824

Panel B

ln(
MSEcalc
MSEsmooth

)

ln(fitness) -0.069*** -0.075*** -0.075*** -0.085*** -0.076***
(0.016) (0.016) (0.014) (0.015) (0.016)

ln(stocks) 0.450*** 0.457***
(0.055) (0.060)

ln(trade) -0.216 0.292
(0.254) (0.246)

ln(tna) 0.274*** 0.001
(0.045) (0.042)

Fund & Quarter FE Yes Yes Yes Yes Yes

Observations 2,604 2,604 2,604 2,604 2,604
R2 0.521 0.572 0.532 0.549 0.572
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Table 3: Liquidity Provision Measures (Ancerno Sample)

For each stock on each day, the previous one-day and five-day market-adjusted returns are calculated. The
momentum measure, Mom1&5, is defined as the average of the 1 and 5 days market-adjusted returns (Jame,
2018). At the fund level, the momentum measure is calculated quarterly by taking the dollar-volume weighted
average Mom1&5 of stocks purchased minus the dollar-volume weighted average of stocks sold. Panel A
presents the correlation matrix between the momentum measure estimated based upon various assumptions
of daily trades: the observed daily trades (Mom1&5), the algorithm estimated trades(Mom1&5calc), the
evenly traded (Mom1&5smooth), and the quarterly momentum measure of Jame (2018) (Mom1&5Q). Panel
B presents regression results where Mom1&5 is regressed on Mom1&5calc and Mom1&5smooth. Numbers
in parentheses are two-way clustered standard errors. *, **, *** denote significance at the 10, 5, and 1%
level respectively.

Panel A: Correlation Matrix

mom1&5 mom1&5calc mom1&5smooth mom1&5Q

mom1&5 1
mom1&5calc 0.756 1
mom1&5smooth 0.586 0.568 1
mom1&5Q 0.599 0.583 0.989 1

Panel B: Regression

mom1&5

mom1&5calc 0.509***
(0.020)

mom1&5smooth 0.190***
(0.021)

Observations 2,604
R-squared 0.712
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Table 4: Liquidity Provision Measures (Mutual Fund S12 Sample)

Table 4 presents summary statistics and the correlation matrix of liquidity provision measures estimated
for the 59,832 fund-quarters in the S12 sample of active mutual funds from 2002-2016. For each stock on
each day, the previous one-day and five-day market-adjusted returns are calculated. Following Jame (2017),
the momentum measure, Mom1&5, is defined as the average of the 1 and 5 days market-adjusted returns.
At the fund level, the momentum measure mom1&5calc is calculated quarterly by taking the dollar-volume
weighted average Mom1&5 of stocks purchased minus the dollar-volume weighted average of stocks sold.
mom1&5end assumes all trades are made on the final day of the quarter. Mom1&5Q is estimated quarterly.
βRLP is the regression-estimated liquidity provision factor of Rinne and Suominen (2014); RankβRLP

is the
quintile rank of βRLP .

Panel A: Summary Statistics

Obs Mean Std. Dev. Min Max

mom1&5calc 64,480 0.020 0.081 -1.256 1.476
mom1&5Q 64,480 0.004 0.050 -0.630 0.510
mom1&5end 64,480 0.004 0.069 -1.414 2.695
βRLP 64,480 -0.151 1.077 -10.050 13.565
RankβRLP

64,480 3 13.816 1 5
*Values scaled (×10)

Panel B: Correlation Matrix

mom1&5calc mom1&5Q mom1&5end βRLP RankβRLP

mom1&5calc 1
mom1&5Q 0.504 1
mom1&5end 0.144 0.174 1
βRLP -0.061 -0.071 -0.006 1
RankβRLP

-0.056 -0.071 -0.004 0.760 1
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Table 5: 4-Factor Time Series Regressions

Each quarter, I sort the funds into quintiles based on their level of mom1&5calc. I create a new portfolio that
is long the portfolio of quintile 5 and short that of quintile 1, rebalancing every month for the length of the
time series. I regress the portfolio returns onto the Fama-French 4-factor model. To formulate the portfolios,
I used the average measures of mom1&5calc over the prior two quarters. Column (1) represents the returns
to the portfolio long quintile 5 and short quintile 1 of mom1&5calc. Columns (2) and (3) represent returns
to the portfolios long quintile 5 and short quintile 1 separately. Numbers in parentheses are standard errors.
*, **, *** denote significance at the 10, 5, and 1% level respectively.

(1) (2) (3)

α -16.038*** -0.061 -16.644***
(5.078) (3.883) (5.434)

Rm −Rf 0.039*** 0.998*** 1.037***
(0.014) (0.014) (0.017)

SMB 0.000 0.286*** 0.286***
(0.030) (0.023) (0.028)

HML -0.138*** 0.014 -0.124***
(0.029) (0.022) (0.033)

UMD 0.133*** -0.061*** 0.072***
(0.023) (0.017) (0.016)

RLP -0.408** -0.132 -0.540***
(0.200) (0.173) (0.185)

Observations 165 165 165
R2 0.581 0.989 0.979
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Table 6: Fama-MacBeth Regressions

I estimate 165 monthly Fama-Macbeth (1973) regressions. Liquidity provision measures, Mom1&5calc,
Mom1&5end, Mom1&5Q, and βRLP are standardized to have zero mean and unit standard deviation.
Mom1&5calc, Mom1&5end, and Mom1&5Q are averaged over the past two quarters; βRLP is estimated
over the past two years using monthly returns data (Rinne and Suominen, 2014). Control variables include
expenses, turnover, cash, fund age, total net assets, and percent flows. All controls are expressed as percent-
ages, except for TNA and fund age, which are by transformed the natural logarithm. All controls are lagged
by one quarter, except fund flows, which are lagged by one, two, and three months. Numbers in parentheses
are Newey-West (1987) corrected standard errors. *, **, *** denote significance at the 10, 5, and 1% level
respectively.

Excess Returns
(1) (2) (3) (4) (5) (6)

mom1&5calc -5.608** -4.357** -5.195*** -5.917***
(2.833) (1.719) (1.608) (1.634)

mom1&5Q -4.840 -0.0403 2.177 2.649
(3.091) (3.043) (2.701) (2.697)

mom1&5end -4.377 -3.205 -3.202 -2.980
(2.836) (2.601) (2.390) (2.444)

RankβRLP
0.631 0.590

(1.941) (1.949)
Expenses -3.812 -3.321

(5.231) (5.286)
Turnover -0.0273 -0.0230

(0.0210) (0.0214)
Cash -0.122 -0.138

(0.377) (0.383)
ln(TNA) 5.228 4.831

(3.212) (3.165)
ln(TNA)2 -0.510* -0.454

(0.280) (0.277)
ln(Age) 29.49** 33.18**

(13.41) (13.85)
ln(Age) -5.304** -5.981**

(2.599) (2.661)
flowt−1 0.461 0.438

(0.380) (0.381)
flowt−2 -0.184 -0.135

(0.317) (0.345)
flowt−3 -0.322 -0.342

(0.342) (0.350)

Style FE No No No No No Yes
Observations 120,051 120,051 120,051 120,051 120,051 120,051
Average R2 0.019 0.022 0.011 0.034 0.119 0.140
Number of months 165 165 165 165 165 165
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Table 7: Liquidity Provision and Fund Flows

I estimate pooled cross-sectional and time series regressions of monthly fund flows onto the mom1&5calc
with controls for performance. Controls follow Del Guercio and Tkac (2002) and include: an indicator for
outperforming the S&P 500, lagged excess returns (separated above and below the S&P 500), Jensen’s alpha
(separated above and below the S&P 500), and the tracking error (separated above and below the Jensen’s
alpha above the lagged excess returns above the S&P 500), fund age, TNA, lagged flow, and year × style
dummies. Due to the coefficient magnitude, I scale mom1&5calc by 1000. In the first regression column,
flows are measured in millions of dollars; the second column uses a percent flow expressed as fraction between
0 and 1. Standard errors are clustered by fund and month. *, **, *** denote significance at the 10, 5, and
1% level respectively.

Flow ($) Flow (%)

mom1&5calc (× 1,000) 1,267 -0.028
(1,010) (0.235)

Outperform S&P 500 dummy 2.382** 0.001
(0.983) (0.001)

Lagged excess return (above S&P 500) 49.657 0.226***
(36.792) (0.032)

Lagged excess return (below S&P 500) 125.699*** 0.130***
(35.596) (0.0321)

Jensen’s alpha (above S&P 500) 1,900*** 1.587***
(264.826) (0.113)

Jensen’s alpha (below S&P 500) 1,090*** 0.900***
(181.182) (0.122)

Tracking error (above S&P 500) 10.55*** 0.005**
(3.645) (0.002)

Tracking error (below S&P 500) -0.624 -0.021***
(2.901) (0.003)

Controls Yes Yes

Observations 120,051 120,051
R2 0.143 0.028
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Figure 1: Distribution of Fitness: Ancerno Sample

Figure 1 plots the frequency distribution of fitness values for the sample of 2,604 fund quarters in Ancerno.
I use the genetic algorithm to minimize equation (13) for each fund-quarter in order to find the dynamic
portfolio that best replicates fund’s observed daily returns:

min
k1...kN

T∑
t=1

(Rt,F − N∑
i=1

Ri,t ×
Si,ki,t−1 × Pi,t−1∑N
i=1 Si,ki,t−1 × Pi,t−1

)2

+ 0.01Vt

 .
Rt,F is the return to the fund on day t. Ri,t and Pi,t are the return and price of stock i on day t. Si,k,t−1 is
the number of shares held in stock i on day t− 1. Si,k,t−1 takes on a value equal to ST (the end of quarter
holdings) if k ≥ t− 1 and S0 (the start of quarter holdings) otherwise. There are N stocks in the portfolio
and T days in the quarter. Vt is an indicator variable equal to 1 if the implied flows constraint is violated
and zero otherwise. I minimize the function by selecting values of (k1, . . . , kN ). For ease of interpretation, I
refer to the fitness of the function as the evaluation of equation (13) multiplied by -1. This allows for higher
values of fitness to be interpreted as a greater fit on the data.
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Figure 2: Mom1&5calc Persistence

This figure presents the average values of mom1&5calc based on quintile sorts of the fund’s average
mom1&5calc over the past two quarters from 2002Q4 to 2016Q2. Following Jame (2017), the momen-
tum measure, Mom1&5, is defined as the average of the 1 and 5 days market-adjusted returns. At the fund
level, the momentum measure mom1&5calc is calculated quarterly by taking the dollar-volume weighted
average Mom1&5 of stocks purchased minus the dollar-volume weighted average of stocks sold.
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Figure 3: Mom1&5calc and Future Returns

Each quarter, I sort the funds into quintiles based on their level of mom1&5calc over the past two quarters.
Following Jame (2017), the momentum measure, Mom1&5, is defined as the average of the 1 and 5 days
market-adjusted returns. At the fund level, the momentum measure mom1&5calc is calculated quarterly by
taking the dollar-volume weighted average Mom1&5 of stocks purchased minus the dollar-volume weighted
average of stocks sold. This figure presents the average market excess monthly returns returns for the five
portfolios from October 2002 to June 2016.
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