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ABSTRACT

We show that the recent decline in IPOs in U.S. markets is explained by changes
in the technological disruptiveness of startups, which we measure using textual
analysis of patents from 1930 to 2010. We focus on startups backed by venture
capital and show that startups with disruptive technologies are more likely to exit
via IPO and are less likely to exit via sell-out. This is consistent with IPOs being
favored by firms with the potential to carve out independent market positions with
strong defenses against rivals. We document an economy-wide trend of declining
technological disruptiveness since World War II that accelerated since the late 1990s.
These trends predict fewer IPOs and more sell-outs, and we find that 20% to 60%
of the recent dearth of IPOs, and 55% of the surge in sell-outs, can be attributed
to changes in firms’ technological characteristics.
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I Introduction

Since the late 1990s, the number of initial public offerings (IPOs) in U.S. markets has

sharply declined. Over the same period, the number of private firms exiting via acquisi-

tions (i.e., trade sales) has soared. Successful startups are nowadays more likely to sell

out to other (public or private) companies than seek independent public listings. Many

observers in the media and policy circles worry that these trends reflect a general erosion

in the ability of U.S. financial markets to spur economic growth and spread its benefits

across the general public.1 Recent studies indicate, however, that the dearth of IPOs is

unlikely due to regulatory changes affecting public firms (Gao, Ritter, and Zhu (2013)

and Doidge, Karolyi, and Stulz (2013)) and is partly explained by changes in regulations

affecting the financing ability of private firms (Ewens and Farre-Mensa (2018)). Under-

standing the underlying mechanisms driving the decline in IPOs remains of paramount

importance as the assessment of competing policy responses depends critically on this

microfoundation.

In contrast to existing regulation-based explanations, we show that the recent shift

from IPOs to trade sales is strongly related to a decline in firms’ technological disruptive-

ness. Our analysis builds on the long-standing idea that exiting through an IPO or by

selling out to another firm depends on which exit type enhances the growth potential of

successful private firms (Bayar and Chemmanur (2011) or Gao, Ritter, and Zhu (2013)).

Accordingly, we predict that private firms that can develop an independent market pres-

ence by creating new markets or disrupting existing ones with patented technologies are

more likely to exit and scale up through a public listing.2 In contrast, firms with less

disruptive technology, such as technology that can improve existing products, are more

likely to sell out and thus expand within the boundaries of existing firms that can more

efficiently scale these technologies. We show that the overall technological disruptiveness

1See for instance “The endangered public company: The big engine that couldn’t,” The Economist
(May 19, 2012) or “US stock markets seek depth in IPO pool,” Financial Times (January 9, 2018).

2Consistent with this idea, Darby and Zucker (2018) show that biotechnology firms go public when
they have a science base that can be successfully commercialized, Chemmanur, He, He, and Nandy
(2018) report that manufacturing firms are more likely to go public than sell out when they already have
a strong product market presence (i.e., market share), Poulsen and Stegemoller (2008) and Cumming
and Macintosh (2003) show that firms with more growth potential favor exit through IPOs.
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of U.S. firms has significantly decreased in recent years, leading to fewer IPOs and more

trade sales.

We study the exit strategies of a large sample of U.S. startups backed by venture

capitalists (VCs), because detailed data enables us to precisely link startups’ choice of

exits (i.e., IPO or sell-out) to the patents they file with the U.S. Patent and Trademark

Office (USPTO).3 We use the text in patents to develop a novel measure of technolog-

ical disruptiveness, that is, a patent’s ability to create new markets or generate radical

changes in existing ones (Abernathy and Utterback (1978)). Specifically, we define the

technological disruptiveness of a given patent by the intensity with which its text contains

vocabulary that is new and fast-growing compared to existing knowledge. For example,

genetics-related words such as “peptide”, “clone”, or “recombinant” are newly and in-

creasingly appearing in patents in 1995. We thus define patents that extensively employ

such words in 1995 as more disruptive.4 As they contain pioneering and fast growing ideas

that are legally protected, firms holding more disruptive patents are likely to radically

change markets and capture valuable competitive advantages.5 We posit that these firms

are more likely to go public.

Consistent with recent evidence suggesting that new innovative ideas are getting harder

to discover and develop (Jones (2009) and Bloom, Jones, Reenen, and Webb (2017)), the

average disruptiveness of U.S. patents has markedly declined since 1950, except for tem-

porary spikes during the 1970s (i.e., computer revolution) and the 1990s (i.e., the internet

revolution). A simple comparison of the aggregate evolution of our measure of technolog-

ical disruptiveness against that of private firms’ exits over the last four decades strongly

suggests that IPOs are more prevalent when innovation is more disruptive, whereas trade

sales prevail when innovation is less disruptive.

We confirm this interpretation at the micro-level by exploring whether the technolog-

3In addition, VC-backed startups account for a large fraction of the IPO and acquisition market (Ritter
(2017)) and produce a substantial share of innovation in the economy (Gornall and Strebulaev (2015)).

4With our text-based approach, we classify unambiguously important inventions such as the jet engine,
transistor, laser, satellite, or more recently PageRank (Google) as highly disruptive.

5In line with this conjecture, we show that disruptive patents attract significantly more citations and
higher stock market valuation upon publication by the USPTO.
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ical disruptiveness of VC-backed startups explains the choice of exit. We focus on VC-

backed startups that receive at least one patent over the 1980-2010 period and compute

the technological disruptiveness for each startup-quarter based on all patents received in

the previous five years. We thus obtain a large panel of 561,982 startup-quarter observa-

tions representing 13,679 distinct startups and 506,096 patents. Using a competing risks

regression model that accounts for possible interdependences between exits (i.e., IPO or

sale), we find strong evidence that startups with more disruptive patents are significantly

more likely to go public and less likely to sell out. The link between technological disrup-

tiveness and startup exits is economically large, as a one standard deviation increase in a

startup’s technological disruptiveness is associated with a 21.8% increase in its IPO rate

and a 17.9% decrease in its rate of exit through trade sales.

These results remain after controlling for startups’ age, size, existing characteristics

of patent portfolios (e.g. citations and originality), financing rounds, and overall finan-

cial market conditions. They also hold in specifications with fixed effects that absorb

variation within startup cohorts, geographic locations, and technological expertise.6 Fur-

thermore, we provide additional evidence supporting the validity of our new measure of

startup technological disruptiveness and its role in explaining IPO rates. For example,

we delineate each startup’s product market based on the textual similarity between its

business description and the 10-K business descriptions of publicly traded firms. As direct

validation of our measure, we find that the publicly traded firms that are most similar to

a given startup discuss market disruption significantly more when that startup displays

high level of technological disruptiveness. Alternatively, we show that among startups

exiting through IPOs, those with more disruptive technologies exit into less stable and

more competitive markets that intuitively offer greater opportunities for disruption.

We also find that startups’ exit choices are related to other novel text-based techno-

logical measures. For instance, we define the technological “breadth” of each patent as

the intensity with which its text combines vocabulary from diverse bodies of knowledge

6Our results are also robust to changes in econometric specifications that vary the horizon over which
we measure exits (ranging from the next quarter to the next five years), and to focusing on the early part
of the sample to limit potential truncation bias relating to startup resolution and patent grants (Lerner
and Seru (2017)).
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(as opposed to specialized knowledge). Startups with more technological breadth are

more likely to exit via IPO and less likely to sell out, consistent with the idea that less

specialized technology is less redeployable toward other uses. We also construct various

measures of technological “similarity” by directly comparing a patent’s vocabulary to the

vocabulary used by different groups of firms. In line with Phillips and Zhdanov (2013)

and Wang (2017), we show that startups with patents that are more similar to that of

lead innovators (e.g., IBM, Microsoft, or Intel in the 2000s) are more likely to sell out. In

contrast, sell-outs are less likely for startups having patents that are more similar to that

of other private or foreign firms, consistent with the notion that a firm is less likely to be

an acquisition target when there are more alternative targets.

Given our finding that technological traits such as disruptiveness explain the choice of

exit as IPO or trade sale in the cross-section, it is natural to examine the economy-wide

time-series properties of these variables. The central question is whether dramatic changes

in technological traits can help to explain the dearth of IPOs and the surge in trade sales

observed in recent years. We thus proceed with a two step procedure inspired by the

disappearing dividends literature.7 We first estimate our cross-sectional exit models over

an initial period 1980-1995 and predict average IPO and sell-out incidence rates over the

1996-2010 period. Second, we compute average predicted values from this model in an

out-of-sample period (1996-2010) and compare the average model’s predicted rate of IPO

exits to the average actual rate of IPO exits in this later period.

When our technological characteristic variables are excluded from the model, the aver-

age predicted IPO incidence is 0.63% per quarter, whereas the actual IPO incidence rate

is 0.34%, confirming the existence of the disappearing IPOs anomaly. When we including

our technological characteristics, the predicted IPO incidence rate decreases materially

to 0.57%. Furthermore, the explanatory power of these technological changes is not sen-

sitive to the periods used to estimate and predict the models, or the lags between the

measurement of startup technological traits and predicted exits. We conclude, across sev-

7This methodology was used by Fama and French (2001) and Hoberg and Prabhala (2009) to explain
disappearing dividends, and more recently by Bates, Kahle, and Stulz (2009) to explain increasing cash
holdings.
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eral specifications, that changes in technological characteristics explain roughly 20% of

the overall decline in IPO rates. A similar analysis reveals that changes in technological

traits explain roughly 55% of the recent rise of trade sales.

We further propose that the ability to create disruptive technologies is not uniform

across industries, as the difficulty of creating disruptive inventions is likely convex as

industries mature.8 A consequence is that any residual ability to create new inventions

should vanish at increasing rates as industries mature, and initial industry conditions

regarding the product life cycle become crucial in predicting the future IPO rate. We

consider the product life cycle in Abernathy and Utterback (1978) and posit that markets

in transition or those reaching maturity (e.g., markets that have reached a dominant

product design) are likely to experience the most extreme decline in IPO rates. On the

other hand, very young “fluid” markets are more likely to have high IPO rates that likely

grow during the earliest years as competing disruptive product designs and inventions

require some initial “time to build”.

We follow Hoberg, Phillips, and Prabhala (2014) and compute the degree of product

market fluidity in each firm’s product market. For our VC-backed startups, we use the

business description text, which is observable at the time of “first money”. We find strong

evidence that IPO rates do decline faster as product markets mature as our technological

characteristics explain an economically large 60% of the decline in IPOs in markets with

below median product stability. In contrast, we only explain 10% of the decline in fluid

product markets. Looking to the future, the IPO rate will likely depend critically on the

extent to which new fluid industries emerge (such as those based on artificial intelligence,

fintech, and other new technologies) and the extent to which existing industries stabilize.

Established industries, in particular, should experience persistently declining IPO rates.

Our analysis adds to a growing literature that considers changing market conditions

and the link to the disappearance of IPOs and the rise of trade sales.9 Ewens and Farre-

8The intuition for this assumption is that the most logical inventions are discovered first. As industries
mature, the best ideas become “picked over” and later inventions arise only with very high search costs.

9Ritter and Welch (2002) and Lowry, Michaely, and Volkova (2017) provide comprehensive surveys of
the literature on IPOs.
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Mensa (2018) suggest that the IPO decline results from the increased bargaining power

of founders (over investors), their preference for control, and inexpensive capital in the

private market. Gao, Ritter, and Zhu (2013) suggest that the decline in IPO originates

from changes in market structure that favor selling out to realize economies of scope.

Doidge, Kahle, Karolyi, and Stulz (2018) argue that an increased focus on intangibles also

plays an important role. Our paper shows that changes in technological traits (especially

disruptiveness), which strongly explain exit methods in cross section, can also explain the

decline in IPOs and the rise of trade sales in time series. To our knowledge, our paper

is the first to quantify how much of the observed trends are attributable to changes in

firms’ technological characteristics. Although more work is needed to draw clear policy

recommendations, our findings suggest that the decline in IPOs might be particularly

unresponsive to policy changes, with subsidies to innovative entrepreneurs being perhaps

a possible exception.

Our findings also add to the literature studying the determinants of startup exits. Ex-

isting research indicates that the exit choice of startups depends on founders’ private ben-

efits of control, product market presence, and growth potential (Cumming and Macintosh

(2003), Bayar and Chemmanur (2011), Poulsen and Stegemoller (2008) or, Chemmanur,

He, He, and Nandy (2018)). Our analysis emphasizes the importance of technological

characteristics including disruptiveness, breadth, and similarity to economically relevant

firms.

II Text-based Technological Characteristics

In this section, we describe the patent data and explain the construction of our new

measures of technological characteristics based on patent text.

A Patent Text

We use a web-crawling algorithm to gather information from Google Patents for all

6,850,075 patents that were applied for between 1930 and 2010 and granted by 2013.

For each patent, we gather the publication date, application date, names of inventor(s),

and initial assignee(s). We also collect the full patent text and information on the tech-
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nology classification of the patents by converting the U.S. Patent Classification (USPC)

into the two-digit NBER technology codes created in Hall, Jaffe, and Trajtenberg (2001).

Since we are interested in measuring the technological changes pertaining to the corporate

sector, we categorize each patent into groups based on four types of applicants: U.S. pub-

lic firms, U.S private firms, foreign (private or public) firms, or others (e.g., universities

or foundations). For brevity, we describe this classification method in Appendix A.

[Insert Figure I about here]

The full text of each patent consists of three distinct sections: abstract, claims, and

patent description. The claims section defines the scope of legal protection granted. The

description section explicitly describes the characteristics of the invention/innovation.

It typically includes a title, technical field, background art, specification example, and

industrial applicability. The abstract contains a summary of the disclosure contained in

the description and claims sections. Figure I presents an example of a typical patent

textual structure (#6285999, “A method for node ranking in a linked database”, assigned

to Google in 1998.). We append all three sections into a unified body of text because

earlier patents do not include all sections, and because the organization of patent text into

the three sections may have changed over time (Kelly, Papanikolaou, Seru, and Taddy

(2018) and Packalen and Bhattacharya (2018)).10

Following earlier studies constructing variables from text (e.g., Hanley and Hoberg

(2010) or Hoberg and Phillips (2016)), we represent the text of each patent as a numerical

vector with a length equal to the number of distinct words in the union of all patent

applications in a given year t. We denote this length Nt.
11 Following the convention in

the literature, we eliminate commonly-used words (words appearing in more than 25%

10These papers also use patent text to identify major ideas from each historical year based on each new
word’s intensity of use in future patents, and use these major ideas to determine whether patents use old
or new technologies. Our text-based measures differ in two important ways. First, we propose measures
capturing distinct (and complementary) dimensions of patents’ technological characteristics. Second, our
measures can be measured ex-ante, that is, using only past and current-year patents. This distinction
is important as our goal is to predict future outcomes (i.e., startups’ exits) using initial technological
characteristics without look-ahead bias.

11We organize patents based on their application year rather than the year of the patent grant, as this
more accurately reflects the timing of innovation.
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of all patents in a given year) and rare words (words appearing only in one patent in a

given year).12 Each patent j applied for in year t is then represented by a vector Vj,t (of

length Nt) in which each element corresponds to the number of times patent j employs

one of the unique Nt words used in year t. If patent j does not use a given word, the

corresponding element of Vj,t is set to zero. This vectorization procedure insures that all

patent applications in a given year are represented by a collection of vectors that are in

the same space (of dimension Nt).

Due to the large number of words used across all patents in a given year, the vectors

Vj,t are quite sparse with most elements being zero. For instance, in 1980, the number

of distinct words used in an average patent is 352, and the median is 300, while there

are 400,097 distinct words used across all patent applications. In 2000, the average and

median are 453 and 338, and the total across all applications is 1,358,694.

B Technological Disruptiveness

To capture the technological disruptiveness of a given patent, we focus on the extent to

which a patent uses vocabulary that is new or experiencing rapid growth compared to

existing knowledge. Intuitively, disruptive patents are based on ideas that radically change

an industry or business strategy (e.g., new products or processes), either by creating a

whole new market or by disrupting an existing one. We thus posit that disruptive patents

use novel words that are fast-growing in the universe of patents.

To quantify disruptiveness, we rely on the rate of change in the use of each word

among all patent applications during the current and prior year. As our goal is to link

technological disruptiveness to future outcomes (i.e., startups’ exits), we construct techno-

logical disruptiveness using only text contained in all past and contemporaneous patents.

This alleviates forward-looking bias in our measure. We define an aggregate vector Zt (of

length Nt) in each year as having elements containing the number of times a given word

is used across all patent applications in year t. This vector thus represents the aggregate

12Given the highly technical and rapidly evolving nature of text in the patent corpus, we do not
implement additional filters (e.g. nouns only). While this choice might potentially introduce noise into
our measurements, it maintains power.
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frequency of word usage in a given year t. We then define the vector Dt as the annual

rate of change in the usage of each word (from t− 1 to t) as:13

Dt =
Zt − Z̃t−1

Zt + Z̃t−1

, (1)

where division is element-by-element.

The set of annual vectors Dt thus tracks the appearance, disappearance, and growth

of specific technological vocabulary over time. Elements of Dt are positive if the usage of

the corresponding words increases from year t− 1 to t, and negative if it decreases (e.g.,

words becoming obsolete).

[Insert Table I about here]

As an illustration, Table I displays the ten words experiencing the largest increases

and decreases in use across all patent applications in specific years. For instance, in 1995,

we detect an acceleration of terms related to genetics, such as “polypeptides”, “clones”,

“recombinant” and “nucleic”, following rapid progress in genome sequencing. In that

year, use of terms such as “cassette,” “ultrasonic,” and “tape” are sharply decreasing. In

2005, the most rapidly growing words are related to the internet and include terms such

as “broadband”, “click”, “configurable”, or “telecommunications”.

To obtain the level of technological disruptiveness for a given patent j, we take the

frequency-weighted average of the vector Dt based on the words that patent j uses as

follows:

Tech Disruptivenessj,t =
Vj,t

Vj,t · 1
·Dt × 100, (2)

where the operator “·” denotes the scalar product between two vectors, and “1” is a

unit vector of dimension Nt. Intuitively, patents using words whose usage surges across

all patent applications (i.e., have positive entries in the vector Dt) have higher levels of

disruptiveness. This is the case for patents that either employ words that appear in the

13To ensure Zt and Zt−1 are in the same space, we modify Zt−1 by adding zero elements for words
that newly appeared in year t (as they were not originally in the t − 1 space). Analogously, we modify
Zt by adding zero elements for words that appeared in year t− 1 but not year t.
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patent space for the first time, or that use words whose usage experiences fast growth

across all patents. Hence, a patent using words such as “polypeptides”, “clones”, and

“recombinant” would be classified as disruptive if its application year is 1995, but not in

2005. Symmetrically, patents relying on words whose usage decreases across all patents

(i.e., using relatively older vocabulary such as “cassette,” or “tape” in 1995) have lower

(and possibly negative) levels of disruptiveness.

C Technological Breadth and Similarities

We also develop text-based measures capturing the technological breadth of each patent,

as well as their similarities with other patents of economically linked firms. We posit that

these characteristics are also relevant in predicting startup exits.

To measure the technological breadth of a patent, we first identify words that are

strongly associated with a specific technological field using the six broad technological

fields (f) defined by the first digit of the NBER technical classification.14 Specifically, we

count how often a given word (in Nt) is used by patents classified into each field in each

year, and keep the two fields with the highest usage of the given word. We define a word as

“specialized” (and associated with a field f) if its use in its most popular field is more than

150% that of its second most popular field. Each word is thus classified into one of the six

fields of specialization or it is deemed an “unspecialized” word. For instance, words such

as “bluetooth” and “wifi” are in the “Computer and Communication” field, and “acid”

and “solvent” are in the “Chemicals” field. Second, we define as wj,t,f the fraction of

patent j’s specialized words that are classified into each field f . By construction, each

wj,t,f lies in the [0,1] interval, and they sum to one for each patent j. We then define

technological breadth as:

Tech Breadthj,t = 1−
6∑

f=1

w2
j,t,f . (3)

This measure is one minus the technological concentration of the patent’s vocabulary.

Patents have higher technological breadth if they amalgamate vocabularies from different

14“Chemicals”, “Computer and Communication”, “Drugs and Medicine”, Electricity”, “Mechanics”,
and “Others”.
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specialized technological fields and for which a wide range of knowledge is needed to

develop and understand the invention.15 In contrast, patents with lower breadth use

vocabulary that primarily concentrates on one specialized technological field.

Next, we define three measures of technological similarity by directly comparing the

vocabulary of a given patent to that of patents assigned to three specific groups: lead

innovators, private U.S. firms, and foreign firms. To do so, we rely on the concept of

cosine similarity (see Sebastiani (2002)), which is defined as the scalar product between

each patent j’s normalized word distribution vector Vi,t and a normalized word vector

aggregating the vocabulary specific to a given group of patents.16

To capture the similarity of a given patent j with patents of “Lead Innovators” (hence-

forth LI), we define LIs annually as the ten U.S. public firms with the most patent ap-

plications. This set varies over time as the importance of sectors and firms changes. LIs

include Microsoft and Intel in 2005, IBM and Motorola in 1995, General Electric and Dow

Chemical in 1985, and General Electric, Bell Telephone, and General Motors in 1935. For

each set of LIs in year t, we first identify the set of patents applied for by the LIs over

the past three years (i.e., from year t − 2 to t). The aggregate LI word vector in year t

corresponds to the equally-weighted average of the resulting normalized patent vectors.

We then compute the similarity of any given patent to those of the LIs as:

LI Similarityj,t =
Vj,t

‖Vj,t‖
· VLI,t

‖VLI,t‖
. (4)

Because the word vector VLI,t aggregates word usage across patents of lead innovators

in the last three years, patents exhibiting higher levels of LI similarity contain technologies

that are textually close to those of lead innovators. In contrast, patents with low levels

of LI similarity use text that is unrelated to that used in the patents of lead innovators,

and thus are more distant technologies.

We use similar methods to compute the similarity between the text in each patent j

and the overall text of patents assigned to private U.S. firms or to foreign firms. Specif-

15An illustrative example of a high technological breadth patent is the satellite (patent #2835548 from
1957), which required both mechanical and electronic technologies among others.

16The result is bounded in [0,1] and values close to one indicate closer textual similarity.

11



ically, we form the aggregate private firm (foreign firm) word vectors VP,t (VF,t) as the

equally-weighted average of the normalized vectors V of patent applications by private

(or foreign) firms in year t.17 We then define the similarity between each patent j and

the contemporaneous patent applications of all private U.S. firms as:

Private Similarityj,t =
Vj,t

‖Vj,t‖
· VP,t

‖VP,t‖
. (5)

Analogously, the similarity between patent j and those of foreign firms is:

Foreign Similarityj,t =
Vj,t

‖Vj,t‖
· VF,t

‖VF,t‖
. (6)

These measures are high for patents whose vocabulary is technologically close to that

of patents assigned to private U.S. firms or to foreign firms, respectively. As proximity to

private and foreign firms indicates more contested markets for innovation, these variables

allow us to examine competitive effects in exit choices.

D Descriptive Statistics, Comparisons, and Examples

Table II presents descriptive statistics for our new text-based technological characteris-

tics as well as existing patent variables from the literature for the full sample of patents

(1930-2010). All variables are defined in Appendix B. We first focus on patents’ techno-

logical disruptiveness. Across all patents between 1930 and 2010, we note that empirical

distribution of technological disruptiveness is highly skewed. The first row of Panel A

indicates that the average disruptiveness of patents is 1.69, the median is 1.27, and the

75th percentile is 2.34. The observed asymmetry indicates that while the vast majority

of patents contain incremental inventions, a smaller set of patents appear to be highly

disruptive.

[Insert Table II about here]

We corroborate this intuition by comparing patents’ technological disruptiveness with

17Because these groups contain very large numbers of patents, we aggregate over just the single year
t. We also note that when a patent j belongs to a private U.S. firm or a foreign firm, we exclude it from
the set of patents used to compute VP,t and VF,t, respectively.
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two variables commonly used to describe patent quality and economic value. First, we

collect all citations for each patent as of early 2014 from Google Patents.18 Second, for the

set of patents assigned to public firms, we use their estimated value as measured by Kogan,

Papanikolaou, Seru, and Stoffman (2016) using stock return changes around patent grants’

announcements (henceforth KPSS). Panel B reveals positive and significant correlations,

indicating that patent applications exhibiting higher levels of technological disruptiveness

attract more ex post citations, and have larger economic values when granted. These

positive relationships remain highly significant in regressions with fixed effects for appli-

cation year, grant year, and technology category (and clustering standard errors by grant

years).

Although a patent’s technological disruptiveness is significantly related to future cita-

tions and economic value, the reported correlations range between 0.03 and 0.10, suggest-

ing important differences across these measures, and especially between disruptiveness and

future citations.19 To better understand this difference, we study in detail the 25 patent

applications occurring between 1980 and 2010 that have attracted the largest number of

citations in the first five years following their grant. We display in Panel A of Table III

the percentile of each such patent in the distribution of technological disruptiveness. Al-

though citations are clear indications that patents are widely used ex-post, technological

disruptiveness is specifically designed to capture new and fast-growing ideas ex-ante. This

is evident in Panel A, where patents with high levels of disruptiveness tend to build-out

novel ideas (e.g., the use of HTML in the mid-nineties), rather than refinements or syn-

thesis of existing ideas (e.g., the iPhone or semiconductor advances in the mid-2000s).

Indeed, the average percentile of technological disruptiveness for these 25 patents is 57,

as the most disruptive patents refer to more nascent and viral technologies.

[Insert Table III about here]

Panel B displays similar figures for a collection of twelve unambiguous breakthrough

18We eliminate patents granted in early 2014 to avoid having a partial year of data.
19Unlike citations, our measure of technological fluidity is less exposed to truncation (e.g. Lerner and

Seru (2017)) and it uses ex-ante information. Additionally, our measure can be computed for all patents,
whereas economic value can only be computed for public firm patents (which represent only 28% of all
patents).
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patents, as identified by the USPTO.20 The average technological disruptiveness of these

patents is very high (84th percentile). The most disruptive patents in this set are “Com-

plex computer” in 1944 (#2668661) and DNA modifications in 1980 (#4399216), both

of which virtually created new industries. Other key inventions, such as the satellite,

laser, and PageRank, use vocabulary that is new and rapidly growing around the time of

their application. Interestingly, some of these breakthrough inventions are barely cited.

For instance, the patents related to the invention of the “television” (#1773980) and the

“helicopter” (#1848389) are in the lowest percentile of the cohort-adjusted distribution

of citations. Yet, our new measure classifies these patents as highly disruptive.

Tables II and III also provide statistics for the other text-based measures. Un-

like patents’ technological disruptiveness, patent breadth is evenly centered around its

average value of 0.42, indicating less skew specializations across patents. Remarkably,

Table III indicates that patents’ technological breadth and their originality (as defined by

Trajtenberg, Henderson, and Jaffe (1997)) are largely unrelated.21 For instance, software-

related patents (e.g., #6964374, #7630986, or #7356679) display low levels of technologi-

cal breadth, as they rely on a relatively narrow vocabularies. Yet, they rank high in terms

of their originality. In contrast, breakthrough inventions display above-median levels of

technological breadth. For example, the invention of the satellite, computer, and the jet

engine combine broad scientific language.

Finally, we observe some variation in similarity across patents, but the overall levels

are low, which is not surprising given the large range and diversity in the vocabulary used

across all patents. Panel C of Table II further indicates that the text-based measures

capture distinct dimensions of the technological nature of patents. Patents with higher

20Listed patents applied before 1960 come from a list of historical patents at
http://www.uspat.com/historical/. More recent patents are noted for the revenue they generated.

21The construction of our complexity measure is somewhat similar, but we measure concentration based
on the assignment of words to technology areas rather than citations. This has several advantages. First,
our measure of complexity is well defined even for patents with zero or one backward citations. Second,
technology links revealed by vocabularies are not influenced by strategic avoidance of citations and do
not rely on patent examiners having a complete knowledge of the patent space. Third, our measure of
complexity can pick up a reliance on a technology area even if no specific citation to that area is given.
For example, a patent might use “textbook” information about chemistry to describe a portion of the
invention without needing to cite a “Chemical” patent.
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levels of disruptiveness tend to display lower breadth. They are also located nearer to

patents of lead innovators than to patents assigned to private or foreign firms. We also

note that patents nearer to lead innovators tend have lower technological breadth, while

those most similar to private and foreign firms display higher breadth.

III The Decline in Technological Disruptiveness

In this section, we document the aggregate time-series properties of our text-based tech-

nological characteristics between 1930 and 2010. We then contrast these technological

changes with aggregate changes in IPO and acquisition activities occurring between 1980

and 2010.

A Technological Changes in the Last Century

To track the evolution of technological disruptiveness in time series, we compute the

aggregate stock of Tech Disruptiveness.22 Figure II displays the time series from 1930

and 2010, smoothed using a four-quarters moving average. Several interesting patterns

emerge, suggesting important changes were occurring in the technological characteristics

of U.S. innovation. Although there is considerable fluctuation, the time series neatly

maps the history of U.S. innovation. We easily detect periods of sharply increasing dis-

ruptiveness. The first peak occurs around 1950 with an average level of disruptiveness

that is almost double the level of 1930. The period around 1950 is often considered a

time of radical innovation in manufacturing technologies, featuring the invention of the

television, transistor, jet engine, nylon, and xerography. A second peak occurs in the

mid-seventies, corresponding to innovation related to the computer. The last two peaks

of technological disruption appear in the late eighties and mid-nineties, reflecting waves

of inventions related to genetics (e.g., methods of recombination) and the mass adoption

of the Internet.

[Insert Figure II about here]

22To compute the aggregate stock of any patent variable, we first compute the sum of Tech Disrup-
tiveness for patents applied for in a given quarter. We then compute a rolling depreciated sum of the
prior 20 quarters, using a 5% quarterly rate of depreciation. Finally, we normalize the rolling stock by
the number of patents applied for in the 20 prior quarters.
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Despite these periodic surges in disruption, the 1930-2010 period is characterized by

a protracted and steady long-term decline in the disruptiveness of U.S. patents. Between

1950 and 2010, the average level of technological disruptiveness has significantly decreased,

with levels in 2010 being roughly one quarter that of 1950. Importantly, this decline is

not due to changes in the composition of patents (e.g., shifts across technology classes) as

we continue to observe a similar trend after we account for broad technology and location

fixed effects. Rather, the decline in measured technological disruptiveness indicates a

widespread deceleration in vocabulary usage growth rates among U.S. patents. This trend

echoes recent research highlighting the increasing difficulty to generate new innovative

ideas (e.g., Jones (2009) and Bloom, Jones, Reenen, and Webb (2017)).

Figure II also reveals important changes in the technological breadth of U.S. patents.

The overall level of breadth steadily increases between 1930 to 1970. Beginning in the

mid-seventies, there is a twenty-year period of growth in overall patent breadth which

reaches a peak in the mid-nineties that was 20% above the 1970 level. In the most recent

years, however, there is a large decline in the breadth of U.S. patents, dropping by about

25% between the mid-nineties and 2010.

Finally, we find an inverse U-shaped pattern in patent similarities over the last century.

All three measures steadily increase until the eighties, as the text in the average U.S.

patent during this period became increasingly similar to patents assigned to private U.S.

firms, foreign firms, and lead innovators. Beginning in the eighties, however, these trends

reversed, leading to marked declines in the similarity measures. The recent period is

thus characterized by patents becoming both more specialized (i.e., lower technological

breadth) and more distinct across firms.

B Technology, IPO, and Acquisitions (1980-2010)

We next examine the time series properties of IPOs and acquisitions. We obtain data on

IPOs from Jay Ritter’s website, and exclude non-operating companies, as well as IPOs

with an offer price lower than $5 per share, unit offers, small best effort offers, bank and

savings and loans IPOs, natural resource limited partnerships, companies not listed in

CRSP within 6 month of their IPO, and foreign firms’ IPOs. Data on acquisitions are

16



from the Thomson Reuters SDC Platinum Database, and include all domestic completed

acquisitions (of private or public firms) coded as a merger, acquisition of majority interest,

or acquisition of assets giving the acquirer a majority stake.

[Insert Figure III about here]

Panel A of Figure III plots the number of IPOs for each quarter between 1980 and

2010. The patterns are similar to those reported by Gao, Ritter, and Zhu (2013), Doidge,

Karolyi, and Stulz (2017), and Ewens and Farre-Mensa (2018). Remarkably, the evolution

of IPO activity rather closely maps the aggregate dynamics of technological disruptiveness

during this thirty-year period. The number of IPOs drops around 1990, coinciding with a

decline in disruptiveness that follows the earlier surge in genetic science in the mid-1980s.

There were more IPOs as the nineties progressed, when technological disruptiveness expe-

rienced a very large increase. The decline in IPO intensity then began in the early 2000s,

when the average technological disruptiveness of U.S. patents also started to plummet. In

the aggregate, the intensity of new public listings is substantially higher at times where

the average technological disruptiveness of U.S. patent applications is elevated.

Panel B of Figure III plots the evolution of the number of acquisitions, both in total

and separately for private firms. The number of acquisitions has increased since 1980,

with a strong acceleration in the mid-nineties. We note subsequent declines in acquisitions

in the aftermath of the tech bubble and the financial crisis. Yet, the number of acquisi-

tions remains significantly higher since the mid-nineties when compared to the 1980-1995

period. This suggests a relationship between the surge in aggregate acquisitions and the

decline in technological disruptiveness of U.S. patents. Although the pattern for trade

sales is less striking than that for IPOs, the patterns suggest that acquisitions tend to be

high when overall technological disruptiveness is lower.

IV Technological Disruptiveness and Startups’ Exits

To better understand the interplay between technological changes and exits, we explore

the cross-sectional relationship between our text-based technological characteristics and

the decision of private firms to exit by going public or through trade sales. Ideally, we
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would study the exit strategy of all private firms that are plausible candidates for IPOs

or acquisitions. Because data limitations preclude this, we focus on a large sample of

venture-backed private firms, for which we observe both their technological characteristics

and their exit choices.

A Sample of VC-backed Startups

We obtain data on VC-backed U.S. firms from Thomson Reuters’s VentureXpert (Kaplan,

Stromberg, and Sensoy (2002)), which contains detailed information about private star-

tups including the dates of financing rounds and their ultimate exit (e.g., IPO, acquisition,

or failure). We focus on the period 1980-2010 and restrict our attention to VC-backed

firms that are granted at least one patent during the sample period. To assign patents

to VC-backed firms, we follow Bernstein, Giroud, and Townsend (2016) and develop a

fuzzy matching algorithm that matches the names of firms in VentureXpert to patent

assignees obtained from Google Patents (see Appendix C for details). The result is an

unbalanced panel of firm-quarter observations.23 A firm enters our sample in the quarter

it is founded (based on founding dates in VentureXpert) and exits the sample when its

final outcome (IPO, acquisition, or failure) is observed based on the resolve date in Ven-

tureXpert. Firms still active as of November 2017 remain unresolved. We exclude firms

if their founding date is missing or if it is later than the resolve date. The sample begins

in 1980 to guarantee reliable data on outcomes and ends in 2010 because this is when

the link to publicly traded firms created by Kogan, Papanikolaou, Seru, and Stoffman

(2016) ends. Our final sample contains 561,982 firm-quarter observations, corresponding

to 13,679 unique firms and 506,096 patent applications.

We obtain the technological characteristics for each firm-quarter by aggregating each

patent-level variable (text-based and others) using their depreciated sums over the past

20 quarters using a quarterly depreciation rate of 5%. For example, the technological dis-

ruptiveness of firm i in quarter q corresponds to the depreciated sum of the disruptiveness

23Lerner and Seru (2017) note that bias can occur in matching patent assignments to firms because
patents can be assigned to subsidiaries with different names than their parent corporations. However,
this issue is limited in our sample as VC-backed startups are small and are unlikely to have complex
corporate structures.
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of all its patent applications in the past five years, normalized by the number of patents

i applied for over that period.24 We define the exit variables (IPO or sell-out) as binary

variables equal to one if firm i experiences a given exit in quarter q. The construction of

all variables is explained in detail in Appendix B.

[Insert Table IV about here]

As we found for the overall statistics reported in Table II, we find in Table IV a sub-

stantial asymmetry in the distribution of technological disruptiveness among VC-backed

firms despite the aggregation of their patents. The other variables are overall in line

with their aggregate counterparts, indicating that the technological characteristics of VC-

backed firms are roughly representative of those in the economy at large. Table IV further

indicates that the quarterly IPO rate (i.e. the number of IPOs in a quarter divided by

the number of active firms in that quarter) is 0.38%, and the quarterly sell-out rate is

0.54%.25

[Insert Figure IV and Figure V about here]

Figure IV plots the time series of technological characteristics for all unresolved VC-

backed firms in each quarter. For the sake of comparison, we compute the aggregate stock

of each variable for the set of patents granted to VC-backed firms as in Figure II. The

trends closely map those of the aggregate dynamics presented in Figure II, indicating that

the technological changes occurring among VC-backed firms is mirroring economy-wide

changes. In Figure V, we compare the evolution of IPO and sell-out rates for VC-backed

firms to the aggregate patterns. We scale the aggregate patterns, i.e. the quarterly

number of IPOs and acquisitions, by lagged real GDP to obtain exit rates. The upper

figure shows that the evolution of IPO rates for VC-backed firms between 1980 and 2010

24Because Foreign Similarity and LI Similarity are non-trivially correlated (60% and 45%) with Private
Similarity, we orthogonalize Foreign Similarity and LI Similarity by subtracting Private Similarity.

25We report additional information about the sample firms in Appendix D in Table A1. Relative to the
founding date, IPOs and acquisitions play out over time. Of these, IPOs occur fastest on average, while
failure (when explicitly listed by SDC) takes the longest. The average firm applies for its first patent after
4.78 years, and receives its first round of VC funding 6.64 years after its founding. All of these numbers
are mechanistically shorter when measured relative to the first patent instead of the founding year.
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closely follows aggregate IPO rates, especially the decreased IPO rates after 2000. The

lower figure also shows agreement between the sell-out rates observed for VC-backed firms

and the aggregate trend. In particular, we observe growth in acquisition activity in the

latter part of the sample.

Although our sample of VC-backed firms does not include all firms that have the

potential to go public or get acquired, our sample of VC-backed firms nevertheless rep-

resents a useful laboratory to study the interplay between technological changes and the

evolution of IPOs and acquisitions. First, these firms account for a large share of the IPO

market (Ritter (2017)) and the production of innovation (Gornall and Strebulaev (2015)).

Second, their IPO and acquisition rates from the last thirty years appear comparable to

the economy-wide patterns, as shown in the figures above.

B Validation

Our analysis rests on the ability of our measure of disruptiveness to identify startups

that can create new markets or disrupt existing ones. To corroborate this interpretation,

we examine whether the startups that we classify as technologically disruptive (based on

their patents) do in fact operate in product markets that display higher risk of disruption.

First, for each startup, we identify public firms offering similar products and services,

following an approach similar to Hoberg and Phillips (2016). We obtain product descrip-

tions of startups from VentureXpert as reported in the year of their first round of funding.

We then compute the (cosine) similarity between the text in each startup’s product de-

scription (in year t) and that of all public firms, obtained from the product description

section of their 10-K report (also in year t). Since 10-Ks became available in electronic

format in 1997, we focus on 8,771 startups whose first funding round occurred after 1996.

To identify the public firms operating in a given startup’s market (in year t), we identify

the 25 public firms that have the most similar product descriptions relative to the startup.

This is done by measuring the cosine similarity between the startup’s business description

and public firm 10-K business descriptions and taking the 25 public firms with the highest

cosine similarity.
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Next, for each startup, we measure whether its 25 public firm peers are actually at

risk of disruption. This is done by computing the fraction of paragraphs in each public

firm’s 10-K that mentions words related to technology-based disruption. In particular,

we consider three measures. First, we search for paragraphs that contain words having

the root “technol” and also a word having the root “change”. Intuitively, these public

firms peers are discussing exposures to technological change, a direct form of market

disruption. Second, we identify paragraphs having the words with the root “technol” and

also the word root “compet”. Such firms are explicitly discussing competition on the

margin of technological expertise. Third, we consider the more strict set of paragraphs

containing at least one word with the roots “disrupt”, “technol”, and “compet”. In order

to be counted as a hit, a paragraph must contain all three. Table V reveals a positive

association between the technological disruptiveness of startups (using our text-based

patent measure) and these ex-post mentions of market disruption by related public firms.

This strong positive relationship holds across specifications that include either year fixed

effects or a more complete set set of fixed effects including year, technology, location, firm

age, and firm cohort fixed effects.

[Insert Table V about here]

In a separate set of validation tests, we examine the product market characteristics

of 1,579 startups in our sample that go public after 1997. Because these startups gain

public status when they IPO, we are able to link their ex-ante patent-based technologi-

cal disruptiveness measure to product market attributes that are only measurable when

firms are publicly traded. For each IPO firm, we thus consider validation tests based

on three characteristics of their post-IPO market (measured in the year of their initial

listing): product market concentration (HHI), the total similarity to publicly traded peers

(TSimm), and product market fluidity. These three measures are specific to each IPO

firm and these tests are thus direct. This data is available since 1997 (see Hoberg and

Phillips (2016) for competitiveness measures and Hoberg, Phillips, and Prabhala (2014)

for fluidity measures). Our validation tests obtain from life cycle theory (Abernathy and

Utterback (1978)), and we thus predict that disruptable markets are those for which su-
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perior new technologies are more likely to be discovered by competing early stage firms.

For validation, we thus expect that IPO firms having higher values of our patent-based

disruption measure should exit into more competitive, less differentiated and more fluid

product markets.

[Insert Table VI about here]

Based on these direct firm-specific measures, Table VI confirms this ex post prediction.

Newly-public firms with more technologically disruptive patents indeed exit into markets

that are more fluid, contested, and thus disruptable. In contrast, IPO firms with less

disruptive technology operate in more stable markets with less competition and more

product differentiation. Put together, the results in Table V and Table VI confirm that

our patent-based measure of technological disruptiveness is indeed strongly associated

with ex-post predictions regarding product markets indeed being less stable and thus

greater at risk of disruption.

C The Determinants of Startups’ Exit Types

We now examine the relationship between startups’ technological traits and their propen-

sity to exit via IPO or sell-out.26 Our central hypothesis is that firms with more disruptive

technologies will be more likely to seek a public listing and less likely to sell out.

Our baseline specification relies on the competing risks regression approach of Fine

and Gray (1999) that explicitly models the “risk” of choosing a particular exit in quarter q

given that the firm is still unresolved at that time.27 Firms enter the sample (i.e., become

at risk of exiting) when they are founded. Their exit is modeled using competing hazards

to reflect multiple potential exit strategies that are mutually exclusive. This approach

allows us to estimate the relationships between startups’ text-based technological traits

and the full set of potential exits. In addition to the five text-based technology variables,

26As mentioned in Section IV.A, VentureXpert frequently fails to code firms as failed when they stop
operations. Given this data limitation, we do not directly report tests relating to failure outcomes.

27The use of a competing risk model is relatively rare in finance. One recent exception is Avdjiev,
Bogdanova, Bolton, Jiang, and Kartasheva (2017), who examine the determinants of convertible capital
choice by banks.
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we also include controls for the log number of patent applications in the past five years

and a dummy indicating firms with no applications in the past five years.

To ensure that our text-based variables are not capturing the effects of known patent

variables from the existing literature, we further include the originality of startups’ patents

as well as their citations (both aggregated for each startup-quarter as is the case for our

text-based variables). We also note that these existing citation measures are not ex-ante

measurable, which is in contrast to our text-based measures (which we designed to avoid

any possibility of look-ahead bias). Following the literature on IPOs and acquisitions, we

also control for overall market activity using market relative valuation and stock returns

as well as an identifier for the last quarter of the year (Lowry (2003) and Pastor and

Veronesi (2005)). We cluster the standard errors by startup to account for any potential

within-startup dependencies over time.

[Insert Table VII about here]

The first two columns of Table VII confirm the key role played by technological dis-

ruptiveness in startups’ exit choices. In the first column, we observe a strong positive link

between startups’ technological disruptiveness and their likelihood of exiting through an

IPO in the next quarter. The point estimate is 0.218 with a t-statistic of 11.47. This

indicates that a one standard deviation increase in startups’ technological disruptiveness

is associated with a 21.8% increase in the quarterly rate of IPOs.28 On the other hand,

column (2) reveals that the odds of exiting via a trade sale are negatively related to

technological disruptiveness. Indeed, the estimated coefficient is negative (-0.179) and

statistically significant with a t-statistic of -7.86. Hence a one standard deviation increase

in disruptiveness indicates a 17.9% decrease in the sell-out rate. In addition to being

statistically significant, the baseline estimates reveal economically large relationships.

Table VII further reveals that the other text-based technological characteristics are

also important determinants of startups’ exits. We observe for instance that firms’ tech-

28As explained in Fine and Gray (1999), regression coefficients from a sub-distribution hazard model
denote the magnitude of the relative change in the sub-distribution hazard function associated with a
one-unit change in the given covariate. Therefore, estimated coefficients reflect the relative change in the
instantaneous rate of the occurrence of the event in those subjects who are event-free.
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nological breadth is positively related to IPO incidence, and is negatively related to trade

sales. Intuitively, high breadth technologies are difficult for other firms to emulate and

are less redeployable toward other uses. As such, firms with more technological breadth

appear less amenable to acquisitions and are more amenable to exit via IPOs. Table VII

also indicates that firms whose patents are more similar to those of other private firms

or foreign firms are significantly less likely to exit through sell-outs (t-statistic of -7.84)

and are marginally more likely to go public (t-statistic of 1.73). These results are in line

with the negative link between product market similarity and the likelihood of being a

target documented in Hoberg and Phillips (2010) for public firms. When a firm has more

peers, it is more easily replaced and hence the rate of acquisition is lower for these firms.

In contrast, firms holding patents that are more similar to that of lead innovators are

significantly more likely to sell out (t-statistic of 2.76). This result is consistent with the

idea that startups cater their innovation to the need of lead innovators to increase their

acquisition odds, as predicted by Phillips and Zhdanov (2013) and supported by Wang

(2017).

The lower portion of Table VII shows that the control variables are also relevant.

For example, firms are more likely to exit via IPO after periods of strong overall stock

market performance, consistent with growth options or market timing stories. Periods

characterized by higher overall valuations have more IPOs and sell-outs. We also find

that future citations (originality) are positively (negatively) associated with exit via both

IPO and trade sale. Importantly, the inclusion of these variables does not impact the esti-

mate of our text-based characteristics, which confirms that our measures of technological

disruptiveness and breadth are distinct from these existing variables.

In the last two columns of Table VII, we report estimates from linear probability

models where the dependent variables are indicators for whether a given exit occurs in

a given quarter. Although this approach ignores the potential dependence across exits

(i.e., competing risks), linear models allow us to include a wider array of fixed effects. We

include year, state, technology, age, and cohort fixed effects to identify the link between

exits and technological disruptiveness among firms of the same age, those receiving first

24



funding at the same time, those operating in the same year and state, and those innovating

in the same technological fields.29 We find that our conclusions are largely unaffected,

indicating that the effect of technological disruptiveness on startups’ exits is unique. We

also estimate (but do not report for brevity) separate logistic models for each exit type

that include year, state, and technology fixed effects. These tests produce similar results.

[Insert Table VIII about here]

In Table VIII, we use the same specifications in Table VII, but we further control for

startups’ financing, as previous research reports that the amount of VC funding (a proxy

for startups’ implied valuation) predicts startups’ exits (Cumming and Macintosh (2003)).

These tests are important because our interpretation of the link between technological

disruptiveness and startup exits could be due to VCs providing more funding to startups

with more disruptive patents.30 Table VIII indicates that this is not the case. To account

for the possible role of funding, we include startups’ cumulative VC funding (from founding

to quarter q − 1) and a binary variable identifying whether startups received funding in

the last five years. Across all specifications, we confirm that the financing variables

are strong determinants of startups’ exit, especially sell-outs. However, our main result

for technological disruptiveness is fully robust, indicating that our findings cannot be

explained by financing.

Table IX explores the dynamic links between startups’ technological disruptiveness

and exits by increasing the measurement window for identifying startup exits from one

quarter to five years using increments of one year. We focus on linear specifications that

include the full set of fixed effects as described above, and only report coefficients for the

technology variables for brevity. Panel A indicates that the positive associations between

startups’ technological disruptiveness and IPO incidence remains strong at all horizons. In

contrast, Panel B reveals that the negative relation between technological disruptiveness

and the propensity to sell out is only present at short horizons and then fades after two

29Technology fixed effects are based on the most common NBER technology category used in a firm’s
patents (see Lerner and Seru (2017)).

30We confirm this intuition in Table A2 of the Appendix.
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years. We further report in Appendix D that our conclusions are stable throughout our

sample, as the results hold across sub-periods.31

[Insert Table IX about here]

Finally, we also consider whether technological traits are related to the propensity

of a startup to remain private for longer periods. This analysis is motivated by the

evidence in Gao, Ritter, and Zhu (2013) and Ewens and Farre-Mensa (2018) that many

startups remain private longer. Panel C of Table IX presents results from regressions of

startups’ odds of remaining private at different horizons on their current technological

characteristics. Results reveal that startups with high technological disruptiveness exit

more quickly than less disruptive startups. We also find that startups with higher overall

technological similarity to other startups are more likely to stay private longer, and those

that are more similar to foreign firms exit more quickly. Startups with high levels of private

firm similarity are in more competitive markets and need additional time to establish

stable market positions, whereas firms facing foreign competition need to achieve greater

scale more quickly to avoid failure. Overall, these findings complement those of Gao,

Ritter, and Zhu (2013) and Ewens and Farre-Mensa (2018).

V Disappearing IPOs and Surging Sell-Outs

Our results thus far indicate that, between 1980 and 2010, the technological disruptive-

ness of startups is systemically related to their propensity to exit via IPO and sell-out.

Since technological disruptiveness has declined since the late nineties (see Figure IV),

we examine whether the recent shift from IPOs to trade sales is explained by startups’

technological changes.

A Prediction Errors for Startups’ Exit

We use methods from the disappearing dividends literature (e.g., Fama and French (2001)

or Hoberg and Prabhala (2009)) to assess the extent to which our technological character-

istics can explain the disappearing IPOs and surging sell-out anomalies. We thus compare

31Therefore, it is unlikely that our results are affected by truncation biases coming for the “unresolved”
status of recent startups or patent applications not yet granted as pointed out by Lerner and Seru (2017).
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actual IPO rates to those predicted by models estimated using an ex ante period. To as-

sess the impact of our new variables, we estimate predicted rates with and without our

text-based technological variables.

We proceed in two steps. First, we estimate linear probability models where the

dependent variable is the incidence of IPO exits in each quarter over the initial period

1980-1995 (the “pre-period”). The independent variables include firm and technological

characteristics as well as state and technology fixed effects. Second, we compute predicted

values of IPO incidence for each startup in the 1996-2010 period (the “post-period”) using

the fitted coefficients from the pre-period and actual values of the independent variables

in the post-period. We then average the predicted IPO incidence rates across all startups

in each quarter and compare them to the actual average IPO rate. We repeat these steps

for sell-outs to compare actual and predicted sell-out exit rates.

[Insert Table X about here]

Table X presents the results. Panel A indicates that using only the control variables

and fixed effects (i.e., excluding the text-based technology traits) to estimate the first-

stage regression in the pre-period yields an average predicted quarterly IPO incidence

rate of 0.63% in the post-period. This predicted incidence is substantially higher than

the actual IPO rate, which is of 0.36% per quarter in the post-period. The predicted

IPO rate is thus 75% higher than the actual rate. This confirms that IPO rates in the

post-period are “abnormally low” and we thus replicate the disappearing IPOs anomaly.

When we include the text-based technological characteristics in the model, the predicted

IPO incidence in the post-period declines to 0.57%, which is still higher than the actual

incidence rate. Although a significant portion remains unexplained, our estimates imply

that our text-based technological traits explain 22% of the disappearing IPOs anomaly.

The rest of Panel A indicates that our estimates are not sensitive to the definition of the

pre- and post-periods or to the lags between the dependent and independent variables.

Panel B reports parallel analysis for sell-out rates. A benchmark first-stage linear

model that excludes our technology variables estimated in the pre-period yields an average
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predicted sell-out incidence of 0.54% per quarter in the post-period. Compared to the

actual rate of 0.63% per quarter, the base model’s prediction is 14% lower than the

actual rate, suggesting that the prevalence of sell-outs in recent years is “abnormally”

high. We thus replicate the surging trade sales anomaly. When we include our text-based

technology variables in the model, the prediction gap almost entirely disappears, as we

obtain a predicted sell-out rate of 0.63% per quarter. When we alter specifications in the

remainder of Panel B, we observe that changes in startups’ technological characteristics

explain between 20% and 68% of the surging trade sales. We conclude that roughly 55%

(the average across specifications) of the surge in trade sales is explained by changes in

their technological characteristics.

B The Role of Product Market Stability

We further propose that the role of technologies in explaining changes in IPO and trade

sale rates likely differs across industries with varying product maturity. For example, as

industries mature, the best ideas become “picked over” and later breakthrough inventions

obtain only with very high search costs (Jones (2009) and Bloom, Jones, Reenen, and

Webb (2017)). As breakthrough inventions decline, we expect an overall trend towards less

disruptive and more narrow patents. A consequence is that disruptive inventions should

vanish at increasing rates as industries mature, and hence initial industry conditions

become crucial in predicting the future IPO rate. We consider the product life cycle in

Abernathy and Utterback (1978) and posit that maturing markets in transition or those

reaching maturity (e.g., markets that have reached a dominant product design) are likely

to experience the most extreme decline in IPO rates. In contrast, very young “fluid”

markets are more likely to have high IPO rates that might even grow during the earliest

years as competing disruptive product designs are invented and commercialized (a process

requiring some initial “time to build”).

We follow Hoberg, Phillips, and Prabhala (2014) and compute the degree of product

market fluidity in each firm’s product market from 1980 to 2010. For our VC-backed

startups, we use the business description text that is available at the time of the first

funding round (“first money”). We then proceed in two steps. First, we compute the
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aggregate change in product description vocabulary used by startups as the year-over-

year change in the frequency of usage across all business descriptions. This quantity

is computed separately for each word and the result is stored in an aggregate vector

containing the set of word frequency changes for all words (this procedure is similar to

that in Equation (1)). Second, for a given startup, we compute the frequency-weighted

average of the aggregate change vector where the weights are the frequency of words

used by the startup in its own business description (this calculation is similar to that in

Equation (2)). The resulting variable is a product fluidity measure similar to the one

used in Hoberg, Phillips, and Prabhala (2014), but defined over all VC-backed startups

receiving their first money between 1980 and 2010.

We use these firm-specific product fluidity measures to divide observations into above

and below median fluidity sub-samples. We determine median breakpoints separately

in each year. These above and below median groups have “fluid” and “stable” product

markets, respectively. To test our prediction that mature and stable product markets

experience more rapid declines in disruptive patents, and hence more severe declines in

IPO rates, we separately assess the ability of our variables to explain the dearth of IPOs

and the surge in trade sales in each sub-sample.

[Insert Table XI about here]

We present the results in Table XI. Consistent with predictions, we observe in Panel

A that startups in stable markets are less likely to exit via IPO relative to startups

in fluid markets. The actual average IPO rates are 0.32% and 0.40% per quarter for

stable and fluid markets in the post-period (1996-2010), respectively. Moreover, we find

that changes in startups’ technological characteristics explain roughly 60% of the dearth

of IPOs in stable markets. This figure ranges between 43% and 69% across different

specifications. This finding illustrates a much stronger ability of technological traits to

explain disappearing IPOs in transitional and more mature markets, as the full sample

result was only 20%. In contrast, when we consider the fluid markets subsample, we find

that changes in startups’ technological attributes explain just 10% of the dearth of IPOs.
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This figure ranges between 5% and 16% across specifications. Although market fluidity

is critical for understanding IPO rates, Panel B indicates that fluidity has little effect in

moderating our ability to explain the surging trade sales anomaly. We conclude that we

explain roughly 55% of surging trade sales overall as explained above, and this result is

not sensitive across sub-samples.

The results in this section suggest that the future IPO rate will likely depend criti-

cally on the extent to which new fluid industries emerge (such as those based on artificial

intelligence, fintech, and other new technologies) and existing industries stabilize. Estab-

lished industries should experience persistently declining IPO rates. Although more work

is needed to draw policy recommendations, our findings suggest that these trends might

be particularly unresponsive to policy changes, with subsidies to foster entrepreneurial

activity being perhaps a possible exception.

VI Conclusions

We develop new measures of technological disruptiveness and other characteristics using

textual analysis of 6,850,075 U.S. patents that were applied for between 1930 and 2010.

We first document that these characteristics are highly influential in predicting which

startups will exit via IPO or sell-out. These results are economically large and remain

important after controlling for a host of known explanatory variables.

We find that startups with more disruptive patents are more likely to exit via IPO.

Understanding the economics of disruptive patents is more intuitive when juxtaposed

against patents that primarily refine or extend existing technologies. These technologies

are also valuable, but they have less potential to establish independent markets for their

owners. Intuitively, we find that startups having technologies with higher text-based

patent similarity to firms with large patent portfolios are more likely to exit via sell-

outs. These findings are consistent with the broader hypothesis that IPOs are favored

by firms having technologies with the potential to establish independent market positions

with strong defenses against rivals. Sell-outs are favored by firms whose technologies have

less potential to create independent markets, and technologies that are more redeployable.
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Such technologies are more valuable in the hands of existing firms with strong independent

market positions.

We also find that technological traits change dramatically over our long sample period.

For example, we document an economy-wide decline in technological disruptiveness that

began after World War II. Because technological characteristics can explain exit choices

at the micro level, we propose that wholesale changes in technological evolution might

plausibly explain aggregate trends such as the recent decline in IPOs and the surge in sell-

outs. By comparing actual IPO and sell-out intensities to predicted values that condition

on our technological characteristics, we estimate that between 20% and 60% of the decline

in IPOs is attributable to technological changes. Regarding sell-outs, roughly 55% of the

surge can be explained by these same variables.

We note that our findings do not rule out other explanations for the decline in IPOs

such as financing costs and regulatory change as they are not mutually exclusive. We

believe that understanding the microfoundation driving the recent decline in IPOs can

be valuable to academics, policy makers, and industry participants alike. Indeed, the

appropriate policy response to declining IPOs depends critically on the specific economic

forces that are behind the decline.
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Figure I: Example of a Google Patent page
This figure shows the structure of a Google Patent page. The depicted patent is 6,285,999, commonly
known as PageRank. Available at https://patents.google.com/patent/US6285999.
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Figure II: Trends in Aggregate Technology Variables
This figure reports characteristics of the aggregate patent corpus from 1930 to 2010. The variables are
defined at the patent level in Section II. To compute the aggregate stocks, we first compute the sum of
each of the patent-level characteristics for patents applied for in a given quarter. We then compute a
rolling depreciated sum of the prior 20 quarters, using a 5% quarterly rate of depreciation. Finally, we
normalize the rolling stock by the number of patents applied for in the 20 prior quarters. The underlying
patent level measures are winsorized at 1/99% level annually. The series presented are four quarter
moving averages to smooth out seasonality.

Panel A: 1930-2010

Panel B: 1980-2010
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Figure III: Trends in Agregate IPOs and Acquisitions
This figure reports the time series of the number of IPOs in Panel A and acquisitions in Panel B. Data
are from SDC. Panel B separately reports acquisition volume for all targets (dotted line) and private
targets (solid line). The series presented are four quarter moving averages.

Panel A: IPO volume

Panel B: Acquisition volume
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Figure IV: Trends in Technology Variables for VC-backed Startups
This figure reports characteristics of the aggregate corpus of patents held by VC-backed firms from 1980
to 2010. The variables are defined at the patent level in Section II. To compute the series below, we
first compute the sum of each of the patent-level characteristics for patents applied for in a given quarter
by VC-backed firms. We then compute a rolling depreciated sum of the prior 20 quarters, using a 5%
quarterly rate of depreciation. Finally, we normalize the rolling stock by the number of patents applied
for in the 20 prior quarters by VC-backed firms. The underlying patent level measures are winsorized at
1/99% level annually. The series presented are four quarter moving averages to smooth out seasonality.
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Figure V: Trends in IPOs and Sell-Outs of VC-backed Startups
This figure reports the propensity of firms to exit via IPO and acquisition. Aggregate trends are based
on SDC data on IPOs and acquisitions of private targets and are reported in dashed lines as a fraction
of lagged real GDP (left axis). Real GDP is in units of $100m. Trends in the VC-backed private firm
sample are reported in solid lines as a percentage of firms that exist in the sample during the year (right
axis). All series are reported as four quarter moving averages.
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Table I: Changes in Patent Word Usage: Examples
This table reports, for five years throughout the sample period, how innovation has changed based on
the text within patents. Panel A lists the ten words that have the largest year-over-year increase in use
across all patents. Panel B lists the ten words that have the largest year-over-year decrease in use across
all patents

Panel A: Words with largest increase in use

1935 1975 1985 1995 2005

cent bolts laser polypeptides broadband
leaves effort japanese deletion intervening
axes lithium wavelength clones candidates
packing user publication polypeptide click
column describes blood peptides configurable
lead exemplary infrared recombinant luminance
coupled entitled polymer cdna abstract
notch typically mount nucleic acquiring
copper phantom optical transcription telecommunications
chain exploded comparative plasmid gamma

Panel B: Words with largest decline in use

1935 1975 1985 1995 2005

chambers assistant sulfuric cassette vegetable
crank inventor collection ultrasonic acyl
boiling inventors crude machining spiral
agent firm stock abutment gram
seats priority dioxide tape wedge
yield john evident sand gelatin
reducing foreign hydrocarbon packing crude
engine sept shut bottle oven
bell june circuitry slidable maybe
film corporation oxides insofar drilling
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Table II: Summary Statistics: Patent-level Sample
This table presents descriptive statistics for patents granted between 1930 and 2010. The new technology
variables Tech Disruptiveness, Tech Breadth, Private Similarity, LI Similarity, and Foreign Similarity
are defined in Section II. Remaining variables are defined in Appendix B. Panel A reports summary
statistics, where P25 and P75 denote the 25th and 75th percentiles. Panel B reports correlations between
Tech Disruptiveness and preexisting measures of innovation. Panel C reports correlations between the
new technology variables. All variables are winsorized at the 1/99% level annually.

Panel A: Summary statistics

N Mean SD P25 Median P75

Tech Disruptiveness 6,594,248 1.69 2.25 0.51 1.27 2.34
Tech Breadth 6,594,143 0.42 0.22 0.24 0.47 0.60
Private Similarity 6,594,248 0.15 0.05 0.12 0.15 0.18
LI Similarity 6,594,248 0.11 0.05 0.06 0.09 0.13
Foreign Similarity 6,594,248 0.15 0.06 0.11 0.14 0.19
KPSS Value 1,781,386 10.43 32.20 0.73 3.25 9.16
# of Cites 6,595,226 1.58 2.91 0.00 1.00 2.00
Originality 5,335,987 0.40 0.33 0.00 0.46 0.67

Panel B: Correlation with Innovation measures

(1) (2) (3)

(1) Tech Disruptiveness 1.00
(2) Log(1+KPSS Value) 0.06*** 1.00
(3) Log(1+Cites) 0.03*** 0.10*** 1.00

Panel C: Correlation among text-based technology variables

(1) (2) (3) (4) (5)

(1) Tech Disruptiveness 1.00
(2) Tech Breadth -0.19*** 1.00
(3) Private Similarity -0.10*** 0.28*** 1.00
(4) LI Similarity 0.03*** -0.09*** 0.45*** 1.00
(5) Foreign Similarity -0.08*** 0.25*** 0.60*** 0.74*** 1.00
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Table III: Technological Disruptiveness: Examples of Important Patents
For each patent, we report the percentile of three measures of innovation and two measures of complex-
ity. The innovation measures we report are Tech Disruptiveness (“Disrpt”), Cites (received within five
years of the patent grant), and KPSS Value (“KPSS”). The complexity measures we report are Tech
Breadth (“Brdth”) and Originality (“Orig”). The column labeled “Diff” reports the difference between
the percentile of Tech Breadth and Originality. Red cells indicate higher values within a set of measures
and blue cells indicate lower values within a set of measures.

Innovation Complexity
measures measures

Patent Year Dsrpt Cites KPSS Brdth Orig Diff Note

Panel A: Top 25 patents from 1980-2010 by citations

7,674,650 2006 17 100 — 40 55 -15 Semiconductor/transistor
7,732,819 2008 14 100 — 42 55 -13 Semiconductor/transistor
7,501,293 2003 83 100 — 42 95 -53 Semiconductor/transistor
7,468,304 2006 13 100 18 26 1 25 Semiconductor/transistor
7,663,607 2004 67 100 96 29 80 -51 Multipoint touchscreen (Apple)
5,572,643 1995 99 100 — 15 72 -57 Early HTML use
7,462,862 2005 5 100 76 53 42 11 Semiconductor/transistor
7,453,065 2005 38 100 15 39 69 -30 Image sensor
7,453,087 2006 31 100 15 39 55 -16 Semiconductor/transistor
6,964,374 1998 65 100 77 12 88 -76 Storing and accessing metadata
7,630,986 2000 94 100 — 15 88 -73 Secure data interchange
7,632,985 2006 87 100 91 34 55 -21 Soybean biotech
7,411,209 2007 8 100 21 40 — — Semiconductor/transistor
7,181,438 2000 93 100 — 15 79 -64 User database system
7,402,506 2005 6 100 40 61 1 60 Semiconductor/transistor
7,356,679 2004 76 100 94 7 95 -88 Disk image capture
5,530,852 1994 100 100 93 16 1 15 Early HTML use
5,742,905 1994 99 100 — 12 52 -40 Personal communications
5,774,660 1996 98 100 — 20 86 -66 Early server management
7,479,949 2008 19 100 94 11 43 -32 Key iPhone patent
7,385,224 2005 10 100 14 25 81 -56 Semiconductor/transistor
5,608,786 1995 99 100 — 15 51 -36 Electronic comminucations
5,862,325 1996 99 100 — 9 84 -75 Electronic comminucations
5,708,780 1995 99 100 65 19 60 -41 Early server management
7,389,268 2002 7 100 — 12 23 -11 Tools for electronic trading

Panel B: Breakthrough patents

1,773,980 1927 86 1 — 61 — — TV
1,848,389 1929 70 1 — 27 — — Helicopter
2,404,334 1941 73 95 — 77 — — Jet Engine
2,524,035 1948 82 100 71 46 87 -41 Transistor
2,569,347 1948 83 100 55 49 67 -18 Junction Transistor
2,668,661 1944 100 78 59 82 73 9 Modern digital computer
2,835,548 1957 81 68 — 99 — — Satellite
2,929,922 1958 90 99 87 60 — — Laser
4,237,224 1979 95 100 — 67 — — Cohen/Boyer patent
4,399,216 1980 99 99 — 73 1 72 “Axel” patent
4,681,893 1986 67 100 62 34 43 -9 Lipitor patent
6,285,999 1998 87 100 — 15 84 -69 PageRank (Google)
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Table IV: Summary Statistics: Startup-Quarter Sample
This table presents summary statistics for the quarterly sample (1980-2010) of venture backed private
firms. Firms are in the sample from their founding date until the quarter of their final outcome. Note
that some firms remain private at the end of the sample period. The sample is further detailed in Sec-
tion IV.A. The new firm-level technology variables Tech Disruptiveness, Tech Breadth, Private Similarity,
LI Similarity, and Foreign Similarity are stock variables defined in Section IV.A. Remaining variables
are defined in Appendix B. All variables are winsorized at the 1/99% level annually.

N Mean SD P25 Median P75

Tech Disruptiveness 561,982 0.57 1.05 0.00 0.00 0.83
Tech Breadth 561,982 0.13 0.18 0.00 0.00 0.26
Private Similarity 561,982 0.05 0.06 0.00 0.00 0.10
LI Similarity 561,982 0.04 0.05 0.00 0.00 0.07
Foreign Similarity 561,982 0.05 0.06 0.00 0.00 0.09
Log(1+Firm Age) 561,982 3.18 1.18 2.48 3.26 3.89
No PatApps[q-1,q-20] 561,982 0.51 0.50 0.00 1.00 1.00
Log(1+PatApps[q-1,q-20]) 561,982 0.69 0.92 0.00 0.00 1.10
Log(MTB) (q-2) 561,982 0.15 0.07 0.11 0.15 0.19
MKT Return [q-2,q-1] 561,982 0.01 0.13 -0.08 0.02 0.08
Q4 561,982 0.25 0.43 0.00 0.00 0.00
Originality 561,982 0.14 0.20 0.00 0.00 0.28
Log(1+Cites) 561,982 0.43 0.64 0.00 0.00 0.79
IPO rate (x100) 561,982 0.38 6.15 0.00 0.00 0.00
Sell-Out rate (x100) 561,982 0.54 7.32 0.00 0.00 0.00
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Table VI: Validity Tests: Post-IPO competition
This table presents validity tests based on a subsample of the 1,579 startups that go public after 1997
where we are able to merge in both public firm identifiers (GVKEY) and obtain data on the product space
of the firm (on startups’ IPO year). The dependent variables HHI and TSimm, from Hoberg and Phillips
(2016), are text-based measures of industry concentration and total similarity among a firm’s public
peers, respectively. Product Mkt Fluidity is from Hoberg, Phillips, and Prabhala (2014). All variables
are defined in Appendix B and are winsorized at the 1/99% level annually. We include year fixed effects
for the year of IPO. Adjusted R2 is reported as a percentage. Standard errors are heteroskedastic robust
and are reported in parentheses. The symbols ***,**, and * indicate statistical significance at the 1%,
5%, and 10% levels, respectively.

Product Mkt
HHI Log(TSimm) Fluidity
(1) (2) (3)

Tech Disruptiveness -0.009*** 0.143*** 0.404***
(-3.06) (6.60) (5.10)

Observations 749 749 708
R2 (%) 1.3 5.2 9.0
Year FE Yes Yes Yes
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Table VII: The Determinants of Startups’ Exits - Baseline
This table presents cross-sectional tests relating a firm’s ex-ante technological traits and its ultimate
outcome. The outcomes we consider are IPO and sell-out (acquisition). The sample is a quarterly panel
of venture backed private firms from 1980-2010 and is described in Section IV.A. Columns (1)-(2) use
a competing risk hazard model and columns (3)-(4) use an OLS linear probability model. To facilitate
interpretation, coefficients for OLS estimates report the incremental % change in a given outcome. In-
dependent variables are lagged one quarter unless explicitly noted and all controls are standardized for
convenience, except for the Q4 and No PatApps[q-1,q-20] dummy variables. All variables are defined
in Appendix B. Li Similarity and Foreign Similarity are orthogonalized relative to Private Similarity.
All variables are winsorized at the 1/99% level annually. Technology fixed effects are based on the most
common NBER-technology category across a firm’s patents. Location fixed effects are based on the
state reported in VentureXpert, where we combine international firms into one category. Adjusted R2 is
reported as a percentage. Standard errors are clustered by firm and are reported in parentheses. The
symbols ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
(1) (2) (3) (4)

Tech Disruptiveness 0.218*** -0.179*** 0.081*** -0.058***
(11.47) (-7.86) (5.53) (-4.16)

Tech Breadth 0.424*** -0.200*** 0.103*** -0.123***
(9.87) (-5.74) (4.81) (-5.40)

Private Similarity 0.105* -0.390*** 0.024 -0.293***
(1.73) (-7.84) (0.88) (-8.95)

LI Similarity 0.097** 0.109*** 0.008 -0.004
(2.08) (2.76) (0.35) (-0.13)

Foreign Similarity 0.060* -0.113*** 0.036** 0.011
(1.93) (-4.35) (2.53) (0.66)

No PatApps[q-1,q-20] 1.258*** -1.975*** 0.333*** -1.170***
(10.48) (-23.14) (6.36) (-15.96)

Log(1+PatApps[q-1,q-20]) 0.266*** 0.029 0.162*** -0.014
(10.59) (1.31) (8.58) (-0.68)

Log(MTB) (q-2) 0.241*** 0.131*** 0.151*** 0.030
(11.76) (8.03) (5.51) (0.86)

MKT Return [q-2,q-1] 0.251*** 0.022 0.029*** 0.028**
(10.52) (1.07) (2.99) (2.05)

Q4 -0.031 0.088* 0.187*** 0.241***
(-0.50) (1.76) (5.13) (5.69)

Originality -0.107*** -0.131*** -0.031** -0.112***
(-3.31) (-5.32) (-2.19) (-7.00)

Log(1+Cites) 0.104*** 0.163*** 0.050*** 0.118***
(3.07) (6.57) (3.31) (6.13)

Year FE No No Yes Yes
Technology FE No No Yes Yes
Location FE No No Yes Yes
Firm Age FE No No Yes Yes
Firm Cohort FE No No Yes Yes

Observations 559,866 558,965 553,897 553,897
R2 (%) N/A N/A 0.4 0.6
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Table VIII: Determinants of Startups’ Exits - Financing
This table presents cross-sectional tests relating a firm’s ex-ante technological traits and its ultimate
outcome. Each of the models repeats the corresponding model from Table VII, but adds endogenous
financing controls. log(CumVCFunding) is the log of cumulative VC funding the firm receives between
its founding and q−1. No Funding[q-1,q-20] is a control equal to one if the firm has not received funding
in the prior 20 quarters. For brevity, we only report the new financing controls and Tech Disruptiveness.
To facilitate interpretation, coefficients for OLS estimates report the incremental % change in a given
outcome, and Tech Disruptiveness is standardized. Independent variables are lagged one quarter unless
explicitly noted. All variables are winsorized at the 1/99% level annually. Adjusted R2 is reported as a
percentage. Standard errors are clustered by firm and are reported in parentheses. The symbols ***,**,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Competing Risk Hazard OLS

IPO Sell-Out IPO Sell-Out
(1) (2) (3) (4)

Tech Disruptiveness 0.224*** -0.163*** 0.073*** -0.068***
(11.95) (-7.38) (4.98) (-4.88)

log(CumVCFunding) 0.031*** 0.169*** 0.033*** 0.101***
(3.20) (15.40) (7.07) (20.83)

No Funding[q-1,q-20] -1.029*** -2.578*** -0.349*** 0.059
(-9.79) (-11.34) (-9.21) (1.61)

Controls Yes Yes Yes Yes
Year FE No No Yes Yes
Technology FE No No Yes Yes
Location FE No No Yes Yes
Firm Age FE No No Yes Yes
Firm Cohort FE No No Yes Yes

Observations 559,866 558,965 553,897 553,897
R2 (%) N/A N/A 0.5 0.8
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Table IX: The Determinants of Startups’ Exits - Dynamic Responses
This table presents dynamic cross-sectional tests relating a firm’s ex-ante technological traits and its
ultimate outcome over several horizons. In Panel A, column 1 repeats the OLS model examining IPO
exits from column 4 in Table VII. Columns 2-6 subsequently replace the one-period ahead IPO exit
indicator with longer horizons. We repeat this analysis for sell-outs in Panel B. Panel C examines whether
a firm is still private (i.e. no IPO, or sell-out). In all models, the sample, independent variables, and
coefficient interpretation are the same as the OLS models in Table VII. Independent variables are lagged
one quarter and standardized for convenience. LI Similarity and Foreign Similarity are orthogonalized
relative to Private Similarity. For brevity, the control variables and fixed effects are omitted. Standard
errors are clustered by firm and are reported in parentheses. The symbols ***,**, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Exit within next: Qtr Year 2 Years 3 Years 4 Years 5 Years
(1) (2) (3) (4) (5) (6)

Panel A: Exit by IPO

Tech Disruptiveness 0.081*** 0.302*** 0.473*** 0.551*** 0.619*** 0.626***
(5.53) (5.53) (4.91) (4.30) (4.07) (3.65)

Tech Breadth 0.103*** 0.403*** 0.796*** 1.099*** 1.316*** 1.456***
(4.81) (5.09) (5.46) (5.56) (5.42) (5.22)

Private Similarity 0.024 0.065 0.066 0.003 0.129 0.250
(0.88) (0.65) (0.37) (0.01) (0.44) (0.75)

LI Similarity 0.008 -0.001 -0.039 -0.161 -0.226 -0.275
(0.35) (-0.01) (-0.24) (-0.73) (-0.83) (-0.88)

Foreign Similarity 0.036** 0.165*** 0.332*** 0.490*** 0.590*** 0.635***
(2.53) (3.03) (3.32) (3.57) (3.46) (3.22)

Panel B: Exit by Sell-Out

Tech Disruptiveness -0.058*** -0.187*** -0.226** -0.228 -0.221 -0.165
(-4.16) (-3.34) (-2.04) (-1.46) (-1.13) (-0.73)

Tech Breadth -0.123*** -0.523*** -0.986*** -1.372*** -1.709*** -1.870***
(-5.40) (-5.85) (-5.78) (-5.61) (-5.51) (-5.14)

Private Similarity -0.293*** -0.980*** -1.357*** -1.250*** -0.732* 0.078
(-8.95) (-7.66) (-5.54) (-3.61) (-1.71) (0.16)

LI Similarity -0.004 0.046 0.325 0.744** 1.169*** 1.780***
(-0.13) (0.43) (1.58) (2.51) (3.14) (4.10)

Foreign Similarity 0.011 -0.013 -0.216* -0.564*** -0.873*** -1.295***
(0.66) (-0.20) (-1.72) (-3.12) (-3.78) (-4.79)

Panel C: Still Private

Tech Disruptiveness -0.068*** -0.286*** -0.576*** -0.751*** -0.839*** -0.835***
(-3.16) (-3.52) (-3.83) (-3.70) (-3.48) (-3.12)

Tech Breadth -0.010 -0.042 -0.160 -0.288 -0.275 -0.255
(-0.29) (-0.32) (-0.67) (-0.89) (-0.69) (-0.57)

Private Similarity 0.244*** 0.905*** 1.452*** 1.682*** 1.435*** 1.076*
(5.36) (5.29) (4.62) (3.93) (2.78) (1.84)

LI Similarity 0.018 0.068 -0.025 -0.235 -0.432 -0.782
(0.48) (0.47) (-0.09) (-0.64) (-0.96) (-1.55)

Foreign Similarity -0.090*** -0.322*** -0.492*** -0.493** -0.592** -0.585*
(-3.73) (-3.47) (-2.85) (-2.09) (-2.05) (-1.79)
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Table X: Prediction Errors for IPO and Sell-Out Rates
This table presents a comparison of the out-of-sample performance of predictive models with variables
standard in the IPO literature (the “Base” model) and a model which augments the “Base” model with
the new text-based variables (the “BFH” model). Panel A examines IPO exits and Panel B examines
sell-outs. In a given test (column 1), we estimate a predictive OLS model for a look-ahead horizon listed
in column 2 on the sample period beginning in 1980 and ending before the testing period listed in column
3. 1Q, 1Y, 2Y, and 3Y denote forward looking windows of 1 quarter, 1 year, 2 years, and 3 years,
respectively. The cross-sectional sample and underlying data are described in Table VII. We exclude
time-varying fixed effects but keep technology and location fixed effects. We then apply the coefficients
from the trained models on the testing sample listed in column 3, and average these predictions for each
quarter. The true average quarterly exit rates for the testing period are listed in column 4 and the model
predicted exit rates from the “Base” and “BFH” models are listed in columns 5 and 6. Columns 7 and
8 list the average prediction errors for each model. Column 9 reports the percentage improvement for
the “BFH” model relative to the “Base” model. All probabilities in columns (4)-(8) are reported as
percentages.

Look Testing True Model Prob. Error BFH
Test Ahead Period Prob. Base BFH Base BFH Impr
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: IPO Exits

1 1Q [1996,2010] 0.36 0.63 0.57 -0.28 -0.22 22%
2 1Q [1998,2010] 0.32 0.62 0.55 -0.30 -0.23 24%
3 1Q [2000,2010] 0.29 0.63 0.57 -0.34 -0.28 18%
4 1Y [1996,2010] 1.40 2.47 2.23 -1.07 -0.83 22%
5 2Y [1996,2010] 2.75 4.98 4.48 -2.23 -1.73 22%
6 3Y [1996,2010] 4.05 7.60 6.89 -3.55 -2.85 19%

Panel B: Sell-Out Exits

7 1Q [1996,2010] 0.63 0.54 0.63 0.10 0.00 98%
8 1Q [1998,2010] 0.68 0.48 0.59 0.20 0.09 54%
9 1Q [2000,2010] 0.72 0.50 0.63 0.22 0.09 57%
10 1Y [1996,2010] 2.59 2.18 2.46 0.41 0.13 68%
11 2Y [1996,2010] 5.35 4.23 4.61 1.12 0.74 34%
12 3Y [1996,2010] 8.19 6.12 6.53 2.06 1.66 20%

48



Table XI: Prediction Errors for IPO and Sell-Out Rates - Market Stability
This table presents a comparison of the out-of-sample (OOS) performance of two predictive models in
two samples. We compare a “Base” model using variables standard in the IPO literature to a “BFH”
model which augments the “Base” model with the new text-based variables. Panel A examines IPO exits
and Panel B examines sell-outs. The procedure is analogous to that described in Table X, except each
test is repeated for two subsamples: Stable Markets and Fluid Markets, which are defined in Section V.B.
We omit the model-implied OOS probabilities to conserve space.

Stable Markets Fluid Markets

Look Testing True Base BFH BFH True Base BFH BFH
Test Ahead Est. Period Prob. Error Error Impr Prob. Error Error Impr
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: IPO Exits

1 1Q OLS [1996,2010] 0.32 -0.15 -0.07 56% 0.40 -0.43 -0.40 6%
2 1Q OLS [1998,2010] 0.31 -0.15 -0.05 65% 0.35 -0.48 -0.42 12%
3 1Q OLS [2000,2010] 0.31 -0.14 -0.04 69% 0.28 -0.57 -0.54 5%
4 1Y OLS [1996,2010] 1.27 -0.47 -0.18 62% 1.56 -1.79 -1.62 9%
5 2Y OLS [1996,2010] 2.50 -0.95 -0.46 52% 3.08 -3.71 -3.09 17%
6 3Y OLS [1996,2010] 3.68 -1.58 -0.89 43% 4.54 -5.82 -4.90 16%

Panel B: Sell-Out Exits

7 1Q OLS [1996,2010] 0.61 0.07 0.02 73% 0.66 0.11 -0.04 61%
8 1Q OLS [1998,2010] 0.65 0.17 0.11 36% 0.71 0.24 0.07 68%
9 1Q OLS [2000,2010] 0.68 0.18 0.11 42% 0.76 0.26 0.10 63%
10 1Y OLS [1996,2010] 2.48 0.31 0.22 28% 2.71 0.50 -0.08 83%
11 2Y OLS [1996,2010] 5.06 0.90 0.97 -7% 5.65 1.29 0.29 78%
12 3Y OLS [1996,2010] 7.66 1.69 1.91 -13% 8.74 2.33 0.98 58%
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A Defining the Entity Type of Patents’ Assignees

In order to explore how a VC-backed firm’s outcomes are related to competitive pressures and
potential buyers, we augment the patent level dataset to denote if a patent is granted to (A) a
private, domestic U.S. firm, (B) an international firm, or (C) a U.S. public firm.

First, we find all patents assigned to public firms. We obtain the GVKEY for assignees
from the NBER patent dataset, and augment this with Kogan, Papanikolaou, Seru, and Stoff-
man (2016). We use all assignee links for the entire 1900-2013 period. Also note that Kogan,
Papanikolaou, Seru, and Stoffman (2016) contains PERMNO identifiers, which we convert to
GVKEY using a link table from WRDS. When the headquarters country from CRSP-Compustat
is available, we mark these firms as either international firms or U.S. public firms. Next, we
output the top 3,000 remaining assignees and manually classify the entity type. After these
steps, 3,126,605 patents are classified as either U.S. public firms or foreign firms.

Second, we use information from the NBER classification of assignees and manual categoriza-
tion to remove patents assigned to governmental entities, research think tanks, or universities.

Third, we directly identify patents assigned to foreign firms when the last word in the
assignee name is an unambiguous foreign legal identifier, such as “GMBH”, “PLC”, and “Ak-
tiengesellschaft”. We also identify patents granted to foreign firms when the assignee is a firm
(e.g. “CORP”) and USPTO data indicates that the assignee is not domestic. This step identifies
898,797 patents granted to foreign firms.

Fourth, we classify entities as U.S. private domestic firms when the assignee is a firm (e.g.
“CORP”) and USPTO data indicates the assignee is domestic. Previous steps affirmatively
prevent us from calling a corporation a private domestic firm if the corporate is a public firm, a
think tank, or international corporation.

In total, we classify the entity type of 78% of all patents granted from 1900-2013. Moreover,
during our main analysis period (1980-2010), we are able to classify the assignee entity type for
92% of patent applications. Of the 4,161,306 applied for in the main analysis period, 12% are
private U.S. firms, 27% are public U.S. firms, 41% are foreign firms, 8% are unclassified, and
11% are “other”.
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B Variable Definitions

Patent level variables

Tech Disruptiveness See Equation 2 and Section II.B.
Tech Breadth See Equation 3 and Section II.C.
LI Similarity See Equation 4 and Section II.C.
Private Similarity See Equation 5 and Section II.C.
Foreign Similarity See Equation 6 and Section II.C.
KPSS Value From Kogan, Papanikolaou, Seru, and Stoffman (2016).
# of Cites Number of citations received in the first five years after publica-

tion by the USPTO. Citations up to December 31, 2013.
Originality The originality of a focal patent is defined as 1 minus the HHI

of the technology fields of the patents cited by the focal patent
(Trajtenberg, Henderson, and Jaffe (1997)). We use the adjust-
ment given in Hall, Jaffe, and Trajtenberg (2001) to reduce bias
for patents that contain few backward citations. We convert U.S.
Patent Classifications for to the NBER technology codes so that
Tech Breadth and Originality are based on the same granularity
of technology classifications.

Firm-quarter variables

Tech Disruptiveness The depreciated sum of patent-level Tech Disruptiveness for
patents the firm applied for over the prior 20 quarters. Quar-
terly depreciation is 5%. We normalize the depreciated sum by
the number of patents the firm applied for. See Section IV.A for
more.

Tech Breadth Converted to firm-quarter like Tech Disruptiveness.
Private Similarity Converted to firm-quarter like Tech Disruptiveness.
LI Similarity Converted to firm-quarter like Tech Disruptiveness.
Foreign Similarity Converted to firm-quarter like Tech Disruptiveness.
Log(1+Cites) Log of the stock of citations. Citations for a firm-quarter is the

sum of the # of Cites (patent-level variable defined above) for
patents the firm applies for in the quarter. Note that this is
forward-looking. The stock is computed using a quarterly depre-
ciation of 5%.

Originality Converted to firm-quarter like Tech Disruptiveness.
No PatApps[q-1,q-20] Dummy variable equal to one if the firm has not applied for a

patent (which was eventually granted) during the last 20 quar-
ters.

Log(1+PatApps[q-1,q-20]) The log of 1 plus the number of patent applications (which were
eventually granted) made by the firm in the last 20 quarters.

Log(1+Firm Age) Firm age is defined as the number of years since its founding date
according to VentureXpert.

IPO One if the firm goes public in the quarter, zero before.
Sell-out One if the firm is acquired in the quarter, zero before.
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Quarterly variables

Log(MTB) (q-2) Aggregate market-to-book is computed quarterly using all firms
in the CRSP-Compustat database. We sum each subcomponent
of MTB across all firms, then compute MTB = (at−ceq+mve−
txdb)/at as defined in Kaplan and Zingales (1997).

MKT Return [q-2,q-1] We compute quarterly market returns from Ken French’s daily
factor file using geometric compounding.

Q4 Equal to one if t − 1 is the fourth quarter (and t is the first
quarter) of the year.
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C Matching patents to VentureXpert

A critical issue is that our research framework requires knowledge of the outcomes for private
firms that receive patents—Does the firm go public, get acquired or simply remain private?
Thus, we download all data on firms receiving venture capital funding starting in 1970 and
ending in 2013 from VentureXpert using SDC Platinum. In addition to the dates of venture
financing, we also download data indicating each portfolio company’s founding date, its final
resolution (as IPO, acquisition, or unresolved) and date of resolution, the company’s name and
the number of financing rounds it received.

Merging VentureXpert with the patent level data requires a link between firms in the patent
database (the initial assignees) and firms in the VentureXpert database. However, no commer-
cially available link table exists. Hence, with the assistance of a computer science graduate stu-
dent, we develop a fuzzy matching algorithm—outlined below—to match firms in both databases
using their names. The algorithm matches 532,660 patents granted between 1966 and 2013 to
19,324 VC-backed firms.32 96.6% of the patent matches and 90.7% of the VC-backed firms are
matched via exact matches on the raw firm name in both datasets or on a cleaned version of
the firm name.

The matching procedure begins by standardizing assignee names in the patent dataset and
in Venture VentureXpert, using a name standarization routine from Nada Wasi.33 This stan-
dardizes common company suffixes and prefixes and produces stem names. We also modify this
program to exclude all information after a company suffix, as this is typically address informa-
tion erroneously stored in the name field by the USPTO. After standardizing the names, we use
the following steps to match firms in the two datasets:

1. We compare all original string names in each dataset, adjusted only to replace all upper-
case characters. If a single VC-backed firm is an exact match where the patent application
is after the firm’s founding date, we accept the match. This step matches 59,026 patents
to VC-backed firms, or 11% of the accepted matches.

2. For the remaining patents, we compare all cleaned string names in each dataset. If a
single VC-backed firm is an exact match where the patent application is after the firm’s
founding date, we accept the match. This step matches 455,456 patents to VC-backed
firms, or 86% of accepted matches.

3. For the remaining patents, we select matches using a fuzzy matching technique, with rules
based on random sampling and validation checks in a hold out sample. This step matches
18,178 patents to VC-backed firms, or 3% of accepted matches. The steps are as follows:

(a) We compute string comparison scores by comparing all cleaned string names in each
dataset using several different string comparison functions. We do this three separate
times, requiring that (1) the first three characters are exact matches, (2) the first five
characters are exact matches, and (3) the first seven characters are exact matches.
We then output a random sample of patents for an RA to examine.

(b) The highest performing rule was a bi-gram match function with the restriction that
the first seven characters were equivalent in both the patent assignee and company

32Firms can receive patents before VC funding.
33 http://www-personal.umich.edu/∼nwasi/programs.html
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name. For each remaining patent, we keep as candidate matches any pair with
equivalent name stems and the highest bi-gram match above 75%.

(c) A random subset of suggested matches, in addition all borderline suggested matches,
were reviewed by hand.

As a result of this matching process, our patent level database contains U.S. private firms
that both (A) have patents and (B) have received VC funding. Aside from imperfections in the
matching process, which could be material, this database is the universe of such firms.34 For
each such firm, we have data indicating its final outcome and text-based data indicating the
details of the firm’s patents, and when they were applied for and granted. This data allows us
to examine both (A) potential drivers of VC funding among firms that have patents but have
not yet received funding, and (B) final resolutions of private status as IPOs or acquisitions.
Cross-sectional and time series examination of both form the basis of our hypothesis testing.

34Lerner and Seru (2017) note that using string matching to identify firms suffers from a limitation
when private firms have patents issued to legal entities with different names, such as subsidiaries or shell
companies meant to obfuscate the owner. This limitation can not be avoided, but is reduced for our
sample of interest. VC-backed private firms are typically small and thus are unlikely to have distinctly
named subsidiaries for research). Moreover, obfuscation is most often used by non-practicing entities,
often called patent trolls, which are unlikely to be a material number of firms in our 19,324 firm sample.
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D Additional Tables

1. Table A1 presents information on the timing of key life events for firms in the main analysis
sample.

2. Table A2 presents subsample tests of the main OLS models on the determinants of firm
exit from Table VII. The subsamples are based on the date of the observation.

3. Table A3 presents tests of regression of startups’ financing on their technological charac-
teristics.
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Table A1: Years between keys events for ventured backed private firm
This table presents information of key life events for firms in the main analysis sample described in
Table IV and Section IV.A. A firm’s first patent is based on the earliest application date for (eventually)
granted patents. Information on VC funding, timing, and firm exits are from VentureXpert, and patenting
information is from Google Patents.

Panel A: Events after the firm’s founding

Years between the firm’s
founding and event

Event N (firms) Mean SD P25 Median P75

First patent 13,679 4.78 12.16 0.50 2.25 6.50
VC funding 13,679 6.64 12.31 0.75 2.50 6.75
IPO 2,496 10.50 10.97 4.75 7.75 12.25
Acquisition 4,082 11.76 11.64 6.00 8.75 13.00

Panel B: Events after the firm’s first patent

Years between the firm’s
first patent and event

Event N (firms) Mean SD P25 Median P75

VC funding 13,679 1.86 8.57 -1.75 0.25 3.75
IPO 2,496 3.70 8.67 -0.25 3.25 7.00
Acquisition 4,082 7.66 7.23 3.75 6.25 10.25
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Table A2: Subsample analysis of private firm exit: Time
This table repeats the OLS cross-sectional tests in columns (4)-(5) from Table VII on two subsamples.
The tests relate a firm’s ex-ante technological traits and its ultimate outcome. We split the sample based
on the observation date. Even numbered columns include observations before January 1, 1996 and odd
numbered columns include observations on or after January 1, 1996. In all models, the definition of
independent variables and interpretation of coefficients are the same as the OLS models in Table VII.
Independent variables are lagged one quarter and standardized for convenience. Note that we standardize
variables within the subsample of the test. Li Similarity and Foreign Similarity are orthogonalized relative
to Private Similarity. For brevity, the control variables are omitted. All variables are winsorized at the
1/99% level annually. Technology fixed effects are based on the most common NBER-technology category
across a firm’s patents. Location fixed effects are based on the state reported in VentureXpert, where we
combine international firms into one category. Adjusted R2 is reported as a percentage. Standard errors
are clustered by firm and are reported in parentheses. The symbols ***,**, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Exit Type: IPO Acquisition

Observation before/after 1995: Before After Before After
(1) (2) (3) (4)

Tech Disruptiveness 0.146*** 0.080*** -0.117*** -0.043**
(3.86) (5.52) (-5.22) (-2.52)

Tech Breadth 0.078 0.028 -0.187*** -0.181***
(1.24) (1.33) (-3.53) (-6.71)

Private Similarity 0.042 -0.003 -0.033 -0.297***
(0.49) (-0.12) (-0.46) (-8.25)

LI Similarity 0.065 -0.042* 0.154*** 0.018
(0.95) (-1.74) (2.83) (0.57)

Foreign Similarity -0.003 0.053*** -0.111*** -0.022
(-0.06) (3.61) (-2.92) (-1.17)

Observations 169,550 384,347 169,550 384,347
Firms 5,528 11,877 5,528 11,877
R2 (%) 0.4 0.3 0.4 0.4
Year FE Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes
Location FE Yes Yes Yes Yes
Firm Age FE Yes Yes Yes Yes
Firm Cohort FE Yes Yes Yes Yes
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Table A3: The Determinants of Startups’ VC Funding
This table presents OLS cross-sectional tests relating a firm’s ex-ante technological traits
and its VC financing. The outcomes we consider are the log of cumulative VC funding
the firm receives between its founding and quarter q, and a binary variable equals one if a
firm receives a new round of VC financing in quarter q. For brevity, we only report the co-
efficients on the text-based technology variables. To facilitate interpretation, coefficients
for OLS estimates report the incremental % change in a given outcome, and Tech Disrup-
tiveness is standardized. Independent variables are lagged one quarter. All variables are
winsorized at the 1/99% level annually. Adjusted R2 is reported as a percentage. Stan-
dard errors are clustered by firm and are reported in parentheses. The symbols ***,**,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Ind. Variable: Cum.Funds New round Cum.Funds New Round

Sample: Whole Whole pre-95 post-95 pre-95 post-95
(1) (2) (3) (4) (5) (6)

Tech Disruptiveness 0.625*** 0.179*** 1.029*** 0.405*** 0.283*** 0.137***
(8.28) (7.02) (7.02) (4.72) (6.00) (4.76)

Tech Breadth -0.211* -0.376*** 0.241 -0.552*** -0.115 -0.546***
(-1.80) (-8.51) (0.88) (-3.96) (-1.25) (-10.41)

Private Similarity 1.662*** 0.373*** 1.406*** 1.638*** 0.469*** 0.291***
(10.36) (6.71) (3.91) (8.93) (3.96) (4.62)

LI Similarity 0.854*** 0.516*** 1.155*** 0.544*** 0.705*** 0.348***
(6.19) (10.53) (3.98) (3.32) (7.33) (5.96)

Foreign Similarity -0.391*** -0.316*** -0.259 -0.461*** -0.324*** -0.292***
(-4.36) (-9.81) (-1.25) (-4.49) (-4.46) (-8.03)

Year FE Yes Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes Yes
Location FE Yes Yes Yes Yes Yes Yes
Firm Age FE Yes Yes Yes Yes Yes Yes
Firm Cohort FE Yes Yes Yes Yes Yes Yes

Observations 561,981 553,897 171,385 390,596 169,550 384,347
Firms 13,679 13,645 5,551 11,955 5,528 11,877
R2 (%) 2.4 31.0 2.9 1.7 22.8 26.4
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