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We study a dynamic limit order market with a finite number of

strategic liquidity suppliers who post limit orders. Their limit or-

ders are hit by either news (i.e. informed) traders or noise traders.

We show that repeatedly playing a mixed strategy equilibrium of a

certain static game is a subgame perfect equilibrium with fleeting

orders and flickering quotes. Furthermore, regardless of the dis-

tributions of the liquidation value and noise trade quantity, we

always find a sequence of equilibria in mixed strategies such that

the resulting random supply schedule converges in mean square,

as the number of liquidity suppliers increases to infinity, to the

deterministic competitive supply function.
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An oft noted feature of today’s equity markets is that quoting and quickly can-

celing are common and frequent events. Nanex describes times in which quote

rates exceed 75,000 quotes per second. In one case, Protective Life Corp., which

typically trades a few hundred times a day, had 21,000 messages in a 10 second

interval in which there was only one transaction.1 Rapid cancellation of quotes
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is often associated with high frequency trading (HFT). In fact, according to the

Security and Exchange Commission (SEC) 2010 Concept Release on Equity Mar-

ket Structure “the submission of numerous orders that are cancelled shortly after

submission” is one of the characteristics of HFT. But this is not just a recent phe-

nomenon. We have evidence of flickering quotes, though in a less extreme form,

going back to 1999, well before machine trading. Hasbrouck and Saar (2007)

document that in 1999 data, on the Island ECN, more than a quarter of quotes

were canceled within two seconds.2

The rapid cancelation of quotes does not appear to coincide with the compet-

itive equilibrium in Glosten (1994), which predicts a well-behaved supply curve

that responds to transactions and other new information. It seems rather im-

plausible to think new information was, in 1999, coming in on a second by second

basis, or in 2012, on a millisecond by millisecond basis. Moreover, Hasbrouck

(2012) shows that the volatility of quote changes at fifty millisecond intervals is

nearly five times what would be predicted by thirty-four minute quote change

volatility-volatility that is more likely to represent information arrival. It is thus

fairly clear that the flickering of quotes is not due to the arrival of information.

Gaming or even fraudulent behavior by HFT has been proposed as a rationale

for flickering quotes. For example, some see excessive quote activity, or quote

stuffing, as an attack on the Consolidated Quote System, causing the reporting

of quotes to fall behind the reporting of trades.

This paper explores the possibility that limit-order traders manage their un-

dercutting exposure by rapidly canceling their quotes and replacing them with

new randomly chosen ones.3 Given these random choices, it is easy to see why we

should see the quotes flicker. Once a constellation of quotes is revealed, a trader

will want to revise hers. But everyone knows that everyone else will want to

change and they are back to picking another price at random. Thus, quote revi-

2In 2000 we thought two seconds was a short period of time.
3The notion of random prices is well understood in economic theory. For example Varian (1980) uses

the same reasoning to explain the price heterogeneity in sales ads.
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sions occur frequently even though trade is sporadic. In a sense, traders mitigate

their undercutting risk by “undoing” transparency. Thus, our model supports

the notion that flickering quotes are not necessarily a part of a nefarious plan to

manipulate the market, but rather the way the liquidity provision game is played.

This is our first contribution.

It is standard in market microstructure models of price determination with pri-

vate information to assume that the liquidity supplied in an electronic limit order

book is characterized by a certain zero-profit condition (see Glosten (1994)). The

argument presented there is that this is the limit, as the number of players gets

large, of the equilibria of games between liquidity suppliers. This is formalized for

some environments by Biais et al. (2000, 2013) and Back and Baruch (2013). In

particular the latter two make clear that the standard pure strategy equilibrium,

in which liquidity suppliers provide supply schedules, may not exist. Further-

more, for a common microstructure model in which there are noise traders and

informed traders arriving randomly to the market, Dennert (1993) shows that

one equilibrium in mixed strategies does not converge to the competitive equilib-

rium. Quite the contrary. In his setting, as the number of liquidity suppliers gets

large, all the submitted offer quotes pile up at the upper end of the allowable set

of prices. Our second contribution is the result that, quite generally, there does

exist a sequence of mixed strategy equilibria that converges to the competitive

LOB equilibrium in a setting with noise and informed traders.

What we show is that, for the class of market microstructure models with in-

formed and noise trade, it is easy to find a symmetric mixed strategy equilibrium.4

If there are n competing liquidity suppliers, an equilibrium involves each of them

picking a price at random and quoting 1
n−1 of the maximum noise trade quantity

(for ease of exposition, normalize this largest trade to one). The random prices

are i.i.d. and hence the number of shares offered at a price p or lower is a bino-

4According to a Wall Street Journal article published on 11/20/2012 “exchanges have had to institute
mandated cord lengths from the main exchange server... one high-frequency firm’s computer a foot from
the exchange server and one across the room will have the same cord length so as neither is seen as
having a split-second advantage,” contributing to the symmetry of the game.
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mial random variable (the number of liquidity suppliers that happened to choose

a price lower than p) divided by n − 1. This is approximately the sample mean

of n Bernoulli random variables. As n gets large, this converges to a constant

function of p.5 We prove that this limit is the number of shares offered at p or

lower in the competitive equilibrium. An implication of this convergence result is

that, in the limit, each individual’s quote flickers, but the aggregate limit order

book is forecastable.

The paper is set out as follows. Section 1 lays out the dynamic game and

presents an example that illustrates existence. We also obtain a rather novel result

from the example that as the probability of informed trade goes to zero, the stage

game expected profit goes to zero but the expected profit in the dynamic game is

positive. Section 2 analyzes the game presented in Dennert (1993) and shows, in

contrast, that there is a sequence of equilibria converging to the competitive limit

order book. Section 3 shows the difficulty of obtaining a pure strategy equilibrium.

Section 4 proves, for the general news/noise trader model the existence of a mixed

strategy equilibrium that converges to the competitive limit order book. The

equilibrium described in Section 4 is a ”no rents” equilibrium. Section 5 illustrates

convergence to the competitive of positive rents equilibria. Section 6 concludes

the paper.

I. Continuous Time Market and Flickering Quotes

We consider a market for a single risky asset and risk free asset with interest

rate set to zero. Orders arrive at the market instantaneously and trade is reported

instantaneously. However, quotes are disseminated only when trade takes place

or after ∆t units of time, whichever comes first. Any real number is a feasible

price; i.e. the tick size is zero.

The market is organized as a pure limit order book market with the usual

price-time priority: An incoming marketable buy (resp. sell) order walks up

5The proof is a little more difficult, since as n changes, the mixing distribution changes.
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(resp. down) the book picking off outstanding limit orders at their limit prices.6

If at the last transaction price there is more than one outstanding limit order,

then a tie occurs. Ties are resolved using the time precedence rule; i.e. the limit

order that was submitted earlier gets to transact.

Information relevant to the value of the risky asset is released to the public at

a random time τ̃ ∼ exp(θ). Following the public announcement, the value of the

asset is realized and the asset liquidates.7 The liquidation value, denoted by ṽ, is

drawn from either a continuous or a discrete random variable. We denote by FV

and v̄ its distribution function and least upper bound, respectively.8

There are three types of traders in the market: noise traders, news traders, and

limit-order traders. The noise traders submit market orders.9 The cumulative

order flow of the noise traders is a compound Poisson process, z̃t, with symmetric

jumps

z̃t =

Ñt∑
m=1

ε̃mq̃m

where Ñt is a standard Poisson process with intensity β, ε̃m ∈ {−1, 1} indicates

whether the m-th order is a buy or sell order (we assume equal probabilities),

and q̃m is the order size of the m-th order, drawn from a common distribution

FQ with a least upper bound of one.10 We use the notation q̃ for a generic order

size. Accordingly, the symbol q denotes a positive number. We assume that τ̃ , ṽ,

and z̃t are independent.

News traders learn ṽ at τ̃ . An instant before the limit-order traders can refresh

6A marketable order is an order that can be executed upon submission. Any buy (resp. sell) limit
order with a limit price greater than then the ask price (resp. smaller than the bid price) is marketable.
In particular, market orders are marketable.

7The assumption that the asset liquidates following the announcement is a convenient way to wrap
up the model.

8If ṽ is unbounded, then v̄ equals infinity.
9All the results in this paper hold if we assume instead that noise traders submit buy and sell limit

orders with prices equal the upper and lower least value of ṽ, respectively.
10The latter assumption is a normalization that allows us to seamlessly move from the equilibrium

mixing distribution to the deterministic competitive supply function.
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their quotes, news traders pick off all stale bids and offers. I.e.; news traders

submit buy or sell orders with unbounded size and limit price ṽ.

Having specified the exogenous strategies of the noise and news traders, we

turn our attention to the group of limit-order traders. This group consists of

n strategic risk neutral traders. The i-th limit-order trader has, at time t, a

collection of outstanding orders that contains all buy and sell limit orders that

were submitted in the past and were not executed or canceled prior to time t.

We denote this collection by bti. The trader may send a message to the exchange

at time t. A message contains instructions to add new limit orders and/or cancel

existing ones. After the exchange executes the instructions at time t, the updated

collection of limit orders is bt+i .

We sort the orders in bti according to their price, and summarize the result in

a non-decreasing price schedule P ti : R \ {0} → R+ with the interpretation that

P ti (q) and P ti (−q) are the prices of the q-th unit that the i-th trader offers and

bids, respectively.

Analogously, we can express the sorted collection of orders in a non-decreasing

function Sti : R+ → R \ {0}. In its positive range, Sti (p) is the number of shares

the i-th trader offers at prices smaller or equal to p, and in its negative range,

Sti (p) is the number of shares the i-th trader bids at prices greater or equal than

p. We let St−i =
∑

j 6=i S
t
j . Informationally, P ti and Sti are equivalent, and we use

them interchangeably.11

We look for a stationary equilibrium with fleeting orders in which time prece-

dence plays no role. In this equilibrium, traders cancel their limit orders immedi-

ately after quotes are disseminated by the exchange and replace them with new

ones. The fresh orders are viewed as random by other market participants and

to emphasize this uncertainty we write S̃t−i. The equilibrium is stationary in the

11Formally, we take supply function S to be right continuous left limit (resp. left continuous right
limit) in its positive (resp. negative) range. We take price schedule P to be left continuous right
limit (resp. right continuous left limit) in its positive (resp. negative) domain. In its positive domain
P (q) = inf{p : S(p) ≥ q}, and in its negative domain P (−q) = sup{p : S(p) ≤ −q}. We can reconstruct
S from P in a similar manner.
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sense that the distributions of S̃t−i, is independent of time.

To keep our exposition succinct, in the following we compute the i-th trader’s

best response using an artificial payoff function that is not smaller than the one

prescribed by the game. More specifically, we assume that ties are always broken

in favor of the i-th trader. Since ties may occur only when noise traders trade,

this is an advantage. Our approach is valid if ties occur with zero probability. In

that case, the optimal strategy for the artificial payoff function is also the best

response. We emphasize that we only alter the payoff function, but we do not

restrict the i-th trader’s strategy.

Suppose a market buy order of size q̃ arrives at time t < τ̃ . The order walks

up the book picking off limit orders until the order is filled up. If the i-th trader

offers his/her q-th unit at p, then the trader sells this unit (i.e. sells at least q)

if and only if St−i(p−), the number of shares other traders offer at prices strictly

smaller than p, plus q is still smaller than the size of the incoming order q̃; i.e.

q + S̃t−i(p−) ≤ q̃. The payoff is

π0(P ti , S̃
t
−i, q̃, ṽ) =

∫ ∞
0

I{q+S̃t−i(Pi(q)−)≤q̃}(P
t
i (q)− ṽ)dq

Analogously, we compute π0(P ti , S̃
t
−i,−q̃, ṽ), the payoff when the incoming mar-

ket order is a sell order of size q̃. Therefore, the i-th trader’s payoff at time t < τ̃

is π0(P ti , S̃
t
−i, dz̃t, ṽ), which is typically zero except at those times when a noise

order arrives; i.e. when dz̃t 6= 0. We integrate out the random variables ṽ, the

sign and the size of the jump, and S̃t−i, and get the expected payoff when trading

with noise traders:

π̄0(P ti ) ≡ E
[
π0(P ti , S̃

t
−i, dz̃t, ṽ)

∣∣∣ I{∆Ñt>0}

]
Note that because S̃t−i has a stationary distribution, the functional π̄0 is indepen-

dent of time.
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News traders pick off all stale limit orders; i.e. news traders submit limit orders

with unbounded size. The payoff at time τ̃ is:

π1(P τi , ṽ) =

∫ ∞
0

(P τi (q)− ṽ)I{ṽ≥P τi (q)}dq +

∫ ∞
0

(ṽ − P τi (−q))I{ṽ≤P τi (−q)}dq

Note that again the functional π1 is time independent. We integrate ṽ out to get

the expected payoff at time τ :

π̄1(P τi ) = E[π1(P τi , ṽ)|τ̃ = τ ]

The expected payoff of the i-th trader at time s is

Πi(s) = E

∫ τ̃

s
π0(P ti , S̃−i, dz̃t, ṽ)dÑt + π1(P τ̃i , ṽ)

= E

∫ τ̃

s
π̄0(P ti )β dt+ π̄1(P τ̃i )

=

∫ ∞
s

e−θ(t−s)
[
π̄0(P ti )β + θπ̄1(P ti )

]
dt

=

∫ ∞
s

(β + θ)e−θ(t−s)
[
(1− µ)π̄0(P ti ) + µπ̄1(P ti )

]
dt

(1)

where for the second equality, we integrate out all random variables except τ̃ ,

which we integrate out in the third equality. The forth equality is a change of

variable, where µ ≡ θ/(θ + β).

The profit flow is

π̄(Pi) = [(1− µ)π̄0(Pi) + µπ̄1(Pi)] (2)

and it is time independent.

To sum up, if S̃−i is stationary, and the allocation rules favor the i-th trader,

then the expected payoff flow is history independent. To find a subgame perfect

equilibrium we analyze the following stage game.
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The Stage Game: In the stage game the book is initially empty. Next, the

limit-order traders simultaneously submit price schedules. With probability µ a

noise trader trades, the size of the order is q̃, and with probability (1 − µ) news

traders trade. Allocations are determined by the price priority rule, and ties are

broken using an unspecified random mechanism.

If a trader knows that there is a positive probability that a tie will occur at p′,

then the trader can offer/bid the same number of shares, ∆Si(p
′), at a slightly

better price. Moreover, because all traders would like to have ties broken in their

favor, the infinitesimal undercutting reasoning implies that in any equilibrium of

the stage game ties occur with zero probability.12

Let P̃i be a symmetric mixed-strategy equilibrium of the stage game. Consider

the dynamic game. Assume that each of the j 6= i limit-order traders uses a sta-

tionary fleeting order strategy; i.e. by the time the exchange disseminates quotes,

the traders have replaced their quotes with new ones drawn from the same mixing

distribution of the stage game equilibrium. A standard pointwise maximization

(for each t maximize the integrand of (1)) implies that each Pi in the support

of P̃i belongs to the argmax set of (1). Moreover, it is also optimal for the i-th

trader to cancel outstanding quotes each time the exchange disseminates quotes,

and replace them with new random quotes drawn from the mixing distribution

of the stage game equilibrium. Because, in the stage game, ties occur with prob-

ability zero, the argmax of (1) is also the set of best responses. We conclude

that the mixed strategy equilibrium of the stage game is a Nash equilibrium with

fleeting orders of the dynamic game. Because history does not play any role in

this equilibrium, the equilibrium is subgame perfect.

12A formal proof that ties occur with probability zero can be constructed along the lines of Proposition
3 in Varian (1980).
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If we denote by π∗ the value of (2) when using the equilibrium strategies, then

the equilibrium expected expected payoff in the dynamic game is

Π∗ =

∫ ∞
s

(β + θ)e−θ(t−s)π∗ dt =
π∗

µ
(3)

The following example illustrates our theory. The example shows that limit-

order traders may randomize both the size and the limit price of their orders.

The example also demonstrates that even for marginal levels of adverse selection,

the profits in the dynamic game may be bounded away from zero.

Example: Let n = 2, ṽ be either 0 or 1 with equal probabilities, q̃ be either

1/2 of a lot, with probability 3/4, or a lot, with probability 1/4.13

We start with the offer side of the book and hence we compute π∗/2. We

postulate that an equilibrium in mixed strategies exists in which each of the

limit-order traders offers half a lot at a random price, with support (ask, 1),

and a second half either at the same price (with probability l) or at one (with

probability 1 − l). Thus, the unknowns are the constants ask, l, π∗, and the

mixing distribution function Ma. For p ∈ (ask, 1), we have

π∗

2
=
µ

2
(p− 1) +

1− µ
2

(p− 0.5)
(
1−Ma(p) +Ma(p)0.25(1− l)

)
(4)

0 ≥µ
2

(p− 1) +
1− µ

2
(p− 0.5)(1−Ma(p))0.25, with equality if l > 0 (5)

Examining the right side of (4): with probability µ, a news event occurs and

with probability 0.5 the news trader buys in which case the limit order at p will

lose (1−p). With probability (1−µ)
2 a noise trader buyer arrives and the profit will

be (p−0.5). A limit order at p will transact with a noise trader if either the other

limit order is placed higher than p, which occurs with probability (1 −Ma(p));

or the other limit order is at p or lower, that limit order only offers half, and

the noise trader buys one. All of this happens with probability Ma(p)(1− l)0.25.

13In Section V we extend this example to arbitrary n.
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Equation (4) states that the expected payoff associated with offering the first half

is independent of the offering price. Thus, the limit-order trader is willing to

randomize the limit order price.

The right hand side of (5) is the expected profit when a second half is also

offered at p (i.e. if l > 0). The expected profit must be zero if the second half

is offered at a price smaller than one, since the right hand side of (5) is zero at

p = 1. Because we focus on the offer side, the expected profit is half the total

profit; i.e., the left hand side of (4) is π∗/2.

To compute the equilibrium, we start with the guess l = 0. Thus, equation (4)

is reduced to

π∗ = µ(p− 1) + (1− µ)(p− 0.5)(1−Ma(p) +Ma(p)0.25)

At p = 1, Ma(p) = 1, and we get π∗ = (1 − µ)0.5 · 0.25. We plug π∗ back into

(4) and solve for Ma(p). We then find ask by solving Ma(ask) = 0. We verify

that as long as µ ≥ 1/9, (5) holds. However, when µ < 1/9, it is “profitable” to

offer an additional half at prices smaller than one; i.e. the right hand side of (5)

is strictly positive.

To find the equilibrium when µ < 1/9, we guess l > 0, and use (5) to solve

for Ma(p). We then find the lower support of Ma by solving Ma(ask) = 0. At

p = ask, (4) gives us

π∗ = µ(ask − 1) + (1− µ)(ask − 0.5)

We then solve (4) for l and verify that l is a constant. We note that our initial

guess l > 0 holds only if µ < 1/9.

When pasting the two solutions, we get Ma, ask, l and π∗ that are continuous

in µ. They are given by

Ma(p) =
p− ask

(1− ask)(2p− 1)
, ask ≤ p < 1
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where the lower support is

ask =


1+7µ
2+6µ µ ≤ 1/9

5+3µ
8 µ ≥ 1/9

The probability that a second half is offered at the same price as the first one is

l =


1−9µ
1+3µ µ ≤ 1/9

0 µ ≥ 1/9

and the expected profit is

π∗ =


3µ(1−µ)

6µ+2 µ ≤ 1/9

1−µ
8 µ ≥ 1/9

Symmetrically, each limit-order trader bids half at a random price p distributed

Mb(p) = 1−Ma(1−p) and bids the second half at the same price with probability

l and at zero with probability 1− l.

LEMMA 1: An equilibrium with the above mentioned properties exists.

The proof of the lemma is in the appendix. Even though both traders offer shares

at 1 (with positive probability, and when µ ≥ 1/9 with probability one), the tie

breaking rule is not required because the noise trader’s order is always executed

at prices smaller than one. In addition, the mixing distribution is continuous,

and therefore ties occur with probability zero.

We note that as µ goes to zero, the expected profit in the stage game goes to

zero. This means that the profit flow in the dynamic game goes to zero. However,

as µ goes to zero, the number of transactions before a news event gets arbitrarily

large, and from (3) the aggregate profit in the dynamic game is strictly positive:

lim
µ→0

π∗/µ = lim
µ→0

3µ(1− µ)

µ(6µ+ 2)
=

3

2
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This concludes the example.

What if the equilibrium of the stage game is in pure strategies? If S−i is

continuous so ties never occur, we can implement the equilibrium in the dynamic

game in exactly the same way. However, limit orders are now forecastable. So

there is no need to cancel orders just to replace them with identical orders. Thus,

if there is an equilibrium in pure strategies, then traders send messages to the

exchange only after trade takes place. That is, traders only replenish executed

orders. In Section V we provide an example in which we can find an equilibrium

in pure strategies.

II. Convergence

We saw that if the stage game has a mixed strategy equilibrium, then there is

an equilibrium with fleeting orders in which quotes are random and short lived.

This calls into question the assertion that the competitive equilibrium is a viable

description of quotes with a large number of limit-order traders. We will show

that as their number increases, the total equilibrium random supply function

converges, in mean square, to the competitive supply function.

Because the stage game equilibrium is played repeatedly, we can focus on the

stage game. In addition, thanks to the symmetry of the game, we can examine the

offer side of the book separately from the bid side. Therefore, for the remaining

of the paper, we analyze only the offer side of the stage game.

We define the functions v(p) = E[ṽ|ṽ > p], and

G(p) =
µ(v(p)− p)(1− FV (p))

0.5(1− µ)(p− Eṽ)
(6)

We need the following technical result.

LEMMA 2: The equation G(p) = 1 has a solution pc > Eṽ. In the interval
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(pc, v̄), the function G(p) is continuous, strictly decreasing, and

G(pc) = 1

lim
p↑v̄

G(p) = 0

Consequently, in the interval (0, 1), the inverse function G−1 is also strictly de-

creasing.

THEOREM 1: Assume q̃ ≡ 1. The stage game has a symmetric equilibrium in

mixed strategies in which each limit-order trader offers 1/(n − 1) at a random

price with distribution function

Mn(p) = (1−G(p))1/(n−1) , p ∈ (pc, v̄) (7)

In this equilibrium, the limit-order traders earn zero profit.

PROOF:

From Lemma 2 it follows that the mixing distribution is well defined. Suppose

other traders follow the strategy stated in the theorem, and consider the problem

of the i-th trader. Let p̃j be j-th trader’s random offering price. Clearly to offer

shares at prices strictly smaller than pc is suboptimal because the trader can offer

the shares at pc and still be ahead of all other offers in the book.

The expected profit associated with offering the q-th unit at p ≥ pc, and as long

as q ≤ 1/(n− 1), is

µE[(p− ṽ)I{p<ṽ}] + (1− µ)E[I{q+S̃−i(p)<1}](p− Eṽ)

= µ(p− v(p))(1− FV (p)) +
(1− µ)

2
(1− Prob(p > max

j 6=i
p̃j))(p− E[ṽ])

= µ(p− v(p))(1− FV (p)) +
(1− µ)

2
(1−Mn(p)n−1)(p− E[ṽ])

= 0

(8)

where for the last equality we use the definition of the mixing distribution. If
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the trader were to offer strictly more than 1/(n − 1), then to trade with a noise

trader, the offering price for the “higher units” has to be better than at least two

other random offering prices. Because the probability of undercutting two random

prices is strictly smaller than the probability of undercutting one, it follows that

the payoff of higher units has to be negative,

We conclude that the i-th trader is indifferent at which price, in the support of

Mn(p), to offer each of the the first 1/(n − 1) units. In particular, it is optimal

to offer a block of 1/(n− 1) at a random price.

The equilibrium in Theorem 1, however, is not unique. Dennert (1993) looks

at a special case of Theorem 1 in which the liquidation value is either -1 or 1,

and reports that in equilibrium each limit-order trader offers one at a random

price.14 In this equilibrium, to gain from trade (i.e. trade with a noise trader) a

limit-order trader has to post the best offer in the book. As a result, the chances

of trading with a noise trader decrease with n, and the mixing distribution shifts

to the right as n increases. In particular, the sequence of equilibria does not

converge to the competitive equilibrium.

In contrast with the result in Dennert (1993), in the equilibrium in Theorem

1, to gain from trade, a limit-order trader has to undercut only one of the other

limit-order traders. To see that the equilibrium in Theorem 1 converges to the

competitive equilibrium, let S̃n(p) denote the total number of shares offered in

equilibrium at prices smaller or equal to p, and let Sc(p) denote the supply func-

tion in the competitive equilibrium.

THEOREM 2: As n goes to infinity, the equilibrium in Theorem 1 converges, in

mean square, to the competitive equilibrium; i.e.

E(S̃n(p)− Sc(p))2 → 0

14Dennert (1993) models a dealer market, where the active trader shops for the best available price. In
limit order markets, offers are already ranked from best to worse by the exchange. Thus, the equilibrium
in Dennert can be implemented in a limit order market. More generally, any equilibrium in a dealer
market in which dealers do not offer quantity discounts can be implemented in a limit order market.
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PROOF:

When q̃ ≡ 1, the competitive supply function is

Sc(p) = I{p≥pc}

In the mixed strategy equilibrium, the total supply of shares is

S̃n(p) =
1

n− 1

n∑
i=1

I{p̃i≤p} (9)

Because (n− 1)S̃n(p) ∼ B(n,Mn(p)), we have

ES̃n(p) =
n

n− 1
Mn(p) −−−→

n→∞
I{p≥pc} = Sc(p)

and

V ar(S̃n(p)) =
n

(n− 1)2
Mn(p)(1−Mn(p)) <

n

4(n− 1)2
−−−→
n→∞

0

Thus,

E(S̃n(p)− Sc(p))2 = V ar(S̃n(p)) +
(
ES̃n(p)− Sc(p))

)2
−−−→
n→∞

0

The convergence of the equilibrium in Theorem 1 cannot be uniform because the

competitive supply function is discontinuous at the ask price. The convergence

is illustrated in Figure 1. Even with a huge number of limit-order traders (n =

1, 000), the depth at the ask price suffices for only about 80% of the noise order.

The remaining 20% of the order executes at a dramatically higher price than the

competitive. In the following, we consider continuous economies in which the

competitive supply function is smooth and the convergence is uniform (Corollary

1 in Section IV and in Figure 2.)
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Figure 1. Convergence to the competitive outcome.

Note: In both figures, the q axis is the competitive equilibrium (i.e. Sc(0.8) = 1). In the left figure, the
two step functions define the 95% confidence band when n = 10; E.g. with probability 0.95 the asking
price for the first, second and third 1/(n− 1) units are virtually the competitive price 0.8. On the other
hand, the last fraction of a noise order of size one is executed, with 0.95 probability, anywhere between
0.801 and 0.942. The narrow band, in the same figure, is the 95% confidence band when n = 1, 000. The
right figure shows the mixing distributions when n = 5 (the upper curve), n = 10 (the middle curve),
and n = 1, 000 (the lowest curve). In both figures, the liquidation value is either zero or one with equal
probabilities, the noise order size is deterministic and equals to one, and µ = 0.6.

III. The Continuous Economy

It is common in the literature to assume that the random variables can take

on any real value. This abstraction sometimes make the analysis tractable. We

therefore further assume that q̃ is a continuous random variable with support

(0, 1).

The competitive equilibrium is given implicitly by

FQ(Sc(p)) = 1−G(p), p ∈ (pc, v̄) (10)

where G(p) is defined in (6), pc = G−1(1) is the competitive ask price, and

v̄ = G−1(0).

We follow Back and Baruch (2013), and conjecture that there is an equilibrium
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in which S−i is continuous. We define the profitability function

u(p, q) = µ(p− v(p))(1− FV (p)) +
1− µ

2
(p− Eṽ) (1− FQ(q)) (11)

If S−i is continuous, then the objective of the ith trader is to choose a non-

decreasing price schedule P that maximizes

∫ ∞
0

u(P (q), q + S−i(P (q))) dq (12)

The objective (12) can be maximized pointwise; i.e., for each q ≥ 0, maximize

the function p→ u(p, q + S−i(p)). The f.o.c. is

∂

∂p
u(p, q + S−i(p))

∣∣∣∣
p=P ∗(q)

= 0 (13)

We can now use the symmetric equilibrium condition, namely, S−i = (n− 1)S∗

to derive an o.d.e. that the total supply function function, Sn, satisfies at prices

greater than the ask price:

up(p, Sn(p)) +
(n− 1)

n
S′n(p)uq(p, Sn(p)) = 0 (14)

The solution of the o.d.e. is strictly increasing (because up > 0 and uq < 0), and

hence the individual supply function Sn(p)/n is feasible. Moreover, the sequence

of solutions converges to the competitive equilibrium supply function as n goes

to infinity.15

The pointwise optimization we carried above is valid if p → u(p, q + S−i(p))

is quasi-concave. It is not obvious that this should be the case. In fact, if we

assume that q̃ is a standard uniform random variable, we can readily see that the

15The competitive supply function satisfies u(p, Sc(p)) = 0, and therefore, expressed in terms of a
differential equation, Sc is the solution of the o.d.e. up(p, Sc(p)) + S′c(p)uq(p, Sc(p)) = 0.
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pointwise objective is quasi-convex! Indeed,

∂2

∂p∂q
u(p, q + S−i(p)) =

µ− 1

2
< 0

which implies that for every p, the function q → ∂
∂pu(p, q + S−i(p)) is strictly

decreasing. Thus, for every p there is a value, call it S∗(p), such that for all

q > 0,

∂

∂p
u(p, q + S−i(p))

< 0, if q > S∗(p)

> 0, if q < S∗(p)

A priori, S∗(p) may be zero or infinity, however from (13), it follows that S∗(p)

must be the inverse of P ∗. Thus,

∂

∂p
u(p, q + S−i(p))

< 0, if P ∗(q) > p

> 0, if P ∗(q) < p

We conclude that the objective function of the pointwise maximization, p →

u(p, q + S−i(p)), is first decreasing and than increasing and hence it is quasi-

convex. Thus, when q̃ is uniformly distributed, S∗ is the not an an equilibrium

individual supply function. We will see in Section V a different distributional

assumption for which S∗ is an equilibrium.

IV. Convergence and the Continuous Economy

In this section we show the existence of a sequence of Nash equilibria with a

random aggregate supply function that converges to the the competitive supply

function in the continuous economy given by (10). To construct the equilibria,

we discretize the order size that noise traders use. That is, in the nth economy

there are n limit-order traders, and the order size of the noise trader is a lattice
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random variable, q̃n, with support

{1/(n− 1), 2/(n− 1), . . . , (n− 1)/(n− 1)}

The demand q̃n is related to the demand in the continuous economy via

q̃n ≡
dq̃(n− 1)e
n− 1

,

where dxe is the smallest integer larger than x. In particular,

Prob(q̃n ≤ j/(n− 1)) = FQ(j/(n− 1)) (15)

Note that even though we use a lattice model, the feasible strategies are general

and we do not restrict the limit-order traders to discrete orders. However, in the

following, we prove the existence of a symmetric equilibrium in which each limit-

order trader offers a block of 1/(n− 1) at a single random price, p̃i. That is,

S̃n(p) =

n∑
i=1

1

n− 1
I{p̃i≤p}

and thanks to the symmetry, (n− 1)S̃n(p) ∼ Bin(n,Mn(p)), where Mn(p) is the

common mixing distribution. We have the following

LEMMA 3: Assume (n− 1)S̃−i(p) ∼ Bin(n,Mn(p)), and let

K(p) = Prob(q̃n > S̃−i(p)) (16)

Then

K(p) = 1− EFQ(S̃−i(p))

PROOF:

The definition of the lattice variable q̃n implies that for any point in its support,

say j/(n− 1) for some integer j ≤ (n− 1), we have q̃n ≤ j/(n− 1) if and only if
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q̃ ≤ j/(n − 1). Because (n − 1)S̃−i(p) is a binomial random variable, and hence

an integer random variable, S̃−i(p) takes values only in the support of the q̃n.

Hence,

Prob(q̃n ≤ S̃−i(p))

= E[E[I{q̃n≤S̃−i(p)}|S̃−i]] = E[E[I{q̃≤S̃−i(p)}|S̃−i]] = E[FQ(S̃−i(p))]

THEOREM 3: In the lattice model there exists a symmetric Nash equilibrium in

which each limit-order trader offers 1/(n− 1) at a random price. The limit-order

traders break even, and the distribution function of the random price is given

implicitly by

Mn(p) = h(G(p)), p ∈ (pc, v̄)

where G is defined in (6), and h(·) is the inverse of the function

k(h) = 1− E[FQ(j̃/(n− 1))], j̃ ∼ Bin(n− 1, h)

In particular, for every p ∈ (pc, v̄), we have K(p) = G(p)

The proof is in the Appendix.

LEMMA 4: In the lattice equilibrium, we have

E[FQ(S̃−i)] = FQ(Sc(p)) (17)

where Sc(p) is the competitive supply function in the continuous economy.

PROOF:
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Outside the support of Mn(p) the identity is obvious. For p ∈ (pc, v̄), we have

1− FQ(Sc(p)) = G(p) = K(p) = 1− E[FQ(S̃−i)]

where the first equality is (10), the second equality is from Theorem 3, and the

last equality is (16).

COROLLARY 1: As we increase n, the equilibrium mixing distribution, Mn,

converges uniformly to the competitive supply function, Sc(p).

The proof of the corollary is involved because the transformations between the

mixing distribution, the expected random supply, and the competitive supply

function are all implicit. The proof is deferred to the appendix. That said, if

we assume that q̃ is a standard uniform random variable, then the corollary is

immediate. From Lemma 4, we have

Sc(p) = E[S̃−i] = Mn(p)

In this example the mixing distribution is exactly the competitive supply function,

and in particular the mixing distribution is independent of n. The strategy itself

depends on n, because the number of units offered is 1/(n − 1). Endowed with

Corollary 1, the convergence result is immediate.

THEOREM 4: As n goes to infinity, the equilibrium in lattice economy con-

verges, in mean square, to the competitive equilibrium.

PROOF:

Because (n− 1)S̃n(p) ∼ Bin(n,Mn(p)), we have

lim
n→∞

E[S̃n(p)] = lim
n→∞

n

n− 1
Mn(p) = Sc(p)
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where the last equality is the Corollary. Additionally,

V ar(S̃n(p)) =
n

(n− 1)2
Mn(p)(1−Mn(p)) <

n

4(n− 1)2
−−−→
n→∞

0

and therefore

E[(S̃n(p)− Sc(p))2] = V ar(S̃n(p)) +
(
E[S̃n(p)]− Sc(p))

)2
−−−→
n→∞

0

V. Economic Rents

The lattice equilibrium in Theorem 3 is a workhorse model: without making

distributional assumptions about ṽ and q̃, the equilibrium converges to the com-

petitive. However, in this equilibrium the strategic limit-order traders break even.

This type of equilibrium is easy to work with because once we have verified that

to offer 1/(n−1) has zero expected profits, it follows immediately that one cannot

gain by offering even more units. If we were to look for equilibrium with positive

expected profit, then we have to carefully check whether it is optimal or not to

offer additional units.

In this section, we present an example of equilibrium with positive expected

profit, and the equilibrium converges to the competitive. Interestingly, the ex-

ample we consider can also be dealt with using the technology developed in Back

and Baruch (2013). In the example, the liquidation value, ṽ, is either zero or one,

with equal probabilities, so (6) reduces to

G(p) =
µ(1− p)

(1− µ)(p− 0.5)

and pc = 0.5(1 + µ). Also, we assume that q̃ has a triangular distribution with

strictly decreasing density; i.e. 1− FQ(q) = (1− q)2.

Thus, the competitive equilibrium in this example is

Sc(p) = 1−
√
G(p), p ∈ (pc, 1)
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The no-rents equilibrium mixing distribution in Theorem 3 is given by

Mn(p) =

1−G(p) n = 2

1 + 1
2(n−2) −

√
1

4(n−2)2
+ (n−1)G(p)

(n−2) n > 2

and by Theorem 4 this equilibrium converges to the competitive equilibrium.

A. Mixed Strategy, Positive Rents

To construct a mixed strategy equilibrium with rents that converges to the

competitive, we assume that the order size is a lattice random variable, q̃n, with

support

{1/n, 2/n, . . . , n/n}

and distribution Prob(q̃n ≤ j/n) = FQ(j/n). Note that the case n = 2 was

studied in Section III. In the notation of the n = 2 case, we posit l = 0 and we

search for an equilibrium in which each of the limit-order traders offers 1/n at

a random price, with support (askn, 1) and yet another 1/n at one. Given our

results for n = 2, we suspect we need to impose a lower bound on µ. Thus, for

p ∈ (askn, 1), (4) and (5) become

π∗

2
=
µ

2
(p− 1) +

1− µ
2

(p− 0.5)E(1− S̃−i(p))2 (18)

0 ≥µ
2

(p− 1) +
1− µ

2
(p− 0.5)E(1− S̃−i(p)− 1/n)2 (19)

We get π∗ by evaluating (18) at p = 1:

π∗ = (1− µ)(1− 0.5)
1

n2

After noting that S̃−i(p) is 1/n times a binomially distributed random variable

with parameters n−1 and the mixing distribution at p, Mn(p), we get a quadratic
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equation in Mn(p). The solution is given by:

Mn(p) =

(n−1)(2n−1)
n2 −

√
(n−1)2(2n−1)2

n4 − 4
[
1−G(p)− 0.5

n2(p−0.5)

]
(n−2)(n−1)

n2

2 (n−1)(n−2)
n2

To find the ask price, we solve Mn(askn) = 0 and get

askn = 0.5(1 + µ) +
(1− µ)

2n2

To satisfy the inequality (19) for all p between askn and 1, we need to assume

µ ≥ (n− 1)

(n+ 1)(2n− 1)

Obviously, as n gets large, the constraint becomes non-binding. That is, the

existence of this type of equilibrium is more likely the greater the number of limit-

order providers. One could speculate, based on the n = 2 case, that for smaller µ

a doubly mixed strategy might be an equilibrium; i.e. traders randomize prices

and quantities.

It is easy to see that Mn(p) converges to the competitive supply function. As

noted above, the supply at a price p or below is the sample mean of independent

Bernoulli trials with success probability Mn(p) and hence, for the reasons given

in Section IV, the random supply function converges to the competitive supply

function. Figure 2 illustrates the convergence.

B. Pure Strategy, Positive Rents

The profitability function (11) is

u(p, q) = µ(p− 1)0.5 +
1− µ

2
(p− 0.5)(1− q)2

and the solution to the o.d.e. (14) is
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Figure 2. Convergence of total supply of shares.

Note: The left figure corresponds to the equilibrium in mixed strategies with rents. The two step
functions define the 95% confidence band when n = 10; E.g. with probability 0.95 the asking price for
the first 0.1 shares is anywhere between 0.8 and 0.87 while the asking price for the next 0.1 shares is
between 0.805 and 0.9. The solid inner band is the 95% confidence band when n = 1, 000. Finally,
the dashed curve corresponds to the competitive equilibrium. The right figure corresponds to the pure
strategy equilibrium. The solid line is the total supply curve when n = 10, and the dashed curve is the
competitive supply function. The case n = 1, 000 is not shown because it is indistinguishable from the
competitive. In both figures, the liquidation value is either zero or one with equal probabilities, the noise
order size has the the triangle distribution, and µ = 0.6.

Sn(p) = 1−
√

µ

1− µ

√
(2p− 1)

−n
n−1 − 1, p ∈ (askn, 1)

where askn is

askn = 0.5
(

1 + µ
n−1
n

)
This may or may not be an equilibrium. As with the example in Section III, it

is important to check the second order conditions that for all q > 0 and at the

solution Sn(p):

∂

∂p
u(p, q + S−i(p))

< 0, if q < Sn(p)/n

> 0, if q > Sn(p)/n
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In the case at hand ∂
∂pu(p, q + S−i(p)) is given by:

0.5µ+ 0.5(1− µ)

(
1− q − n− 1

n
Sn(p)

)2

− n− 1

n
S′n(p)(1− µ)(1− q − n− 1

n
Sn(p))(p− .5)

Note that this expression is quadratic and convex in q and that Sn(p)/n is one

of its zeros. We need to check that Sn(p)/n derived above is its larger root. To

do so we check that the derivative of the above with respect to q evaluated at

Sn(p)/n is positive:

−(1− µ)

(
1− q − n− 1

n
Sn(p)

)
+
n− 1

2n
S′n(p)(1− µ)(2p− 1) > 0

After substitution for Sn(p) and S′n(p) we note that the derivative above is

given by: √
µ(1− µ)

2

√
(2p− 1)

−n
n−1 − 1

[
2− (2p− 1)−n/(n−1)

]
This derivative should be positive for all p and that is determined by the expres-

sion in square brackets. This expression is increasing in p and positive at p = 1.

It will be positive for all p if it is positive at askn. Noting the expression for

askn above, the derivative will be positive if and only if 2 − 1
µ > 0 or µ > .5.

We also need to check that the smaller root of the quadratic equation in q is less

than zero. Brute force shows that this is true if µ > .5. Thus, the pure strategy

equilibrium is as described above as long as there is sufficient adverse selection,

namely µ > 0.5. If on the other hand, µ < 0.5 then, if there is a pure strategy

equilibrium, it is not as characterized above. Figure 2 contrasts this equilibrium

with the equilibrium in mixed strategies.
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VI. Conclusion

The contribution of the analysis in this paper is twofold: (1) it provides a strate-

gic foundation for the competitive equilibrium in Glosten and Milgrom (1985) and

Glosten (1994), and (2) it shows that short lived orders are an equilibrium out-

come. With regard to the second result, the model is “too successful” in the

sense that the life span of all orders, in equilibrium, is at most the latency of the

data feed. There are, however, two caveats. First, the tick size in the model is

zero, and therefore time precedence, in equilibrium, is moot. The combination of

a coarse price grid and time precedence should increase the life span of orders.

The second caveat is that liquidity in our model is solely provided by a group

of traders who hope to profit from the trading game. While this dichotomy is

a time honored assumption in the literature, in limit order markets anyone can

provide liquidity.16 Traders who need immediacy can post aggressive limit orders

and in so doing drive out of the market our group of liquidity suppliers. Similarly,

traders who are only interested in profiting from the trading game may find it

profitable to pick off limit orders posted by these liquidity traders.

Despite the above mentioned limitations, the model gives a simple economic

rational for fleeting orders: limit-order traders worried about being undercut can

effectively hide their quotes by using short lived orders at random prices.

Our analysis finds its most immediate purpose in interpreting the results of

Hasbrouck (2012). That paper shows that while message traffic has increased

dramatically over the past decade (2001-2011), the volatility of the National best

bid and offer has not increased, but the nature of the volatility has. Our two

results–convergence and the robustness of mixed strategy equilibria–predict such

a result. At the individual level, quotes are entered and cancelled quickly, yet

at the aggregate level, and with sufficient competition, the National best bid

and offer need not change very much.17 On the other hand if there are very few

16Roşu (2009) presents a model of a limit order market without the group of liquidity suppliers.
17See figure 1 which shows that for n = 10 the best offer is very close to the competitive price.
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competing liquidity suppliers the best bid and offer can be far more volatile. Thus

a security can have either stable best bid and offer or rapidly oscillating bids and

offers; each case involving a high level of message traffic but different level of

competition.

Appendix

Proof of Lemma 1: To verify that we have found an equilibrium, we consider

the offer side of the stage game, the bid side is symmetric. We assume the second

trader uses the equilibrium strategy, and consider the problem of the first trader.

Offering more than one cannot be optimal because noise traders buy at most one.

We therefore focus on price schedules P1 : [0, 1] → R+. We note that shares

offered at prices greater than one are never executed because trader 2 offers one

at prices smaller or equal to one.

The expected profit on the offer side is

µ

2

∫ 1

0
I{P1(q)≤1}(P1(q)− 1) dq +

1− µ
1

∫ 1

0
Prob(q + S̃2(Pi(q)−) ≤ q̃)(P1(q)− 0.5) dq

=

∫ 1/2

0
I{P1(q)≤1}

[µ
2

(P1(q)− 1)

+
1− µ

2

(
1−Mn(P1(q)) +

Mn(P1(q))(1− l)
4

)
(P1(q)− 0.5)

]
dq (I)

+

∫ 1

1/2
I{P1(q)≤1}

[
µ

2
(P1(q)− 1) +

1− µ
2
· 1−Mn(P1(q))

4
(P1(q)− 0.5)

]
dq (II)

The integrand of (I) is π∗/2 as long as P1(q) ∈ (ask, 1], and strictly less otherwise.

The integrand of (II) is zero if (i) P1(q) = 1 or (ii) µ ≤ 1/9 and P1(q) ∈ (ask, 1].

The integrand of (II) is strictly negative otherwise.

We conclude that it is also optimal for the first trader to offer half at any price

in (ask, 1]. In particular it is optimal to randomize. Also, there is no harm in

offering an additional half at one, and when µ ≤ 1/9 it is also optimal to offer the

additional half at the same price at which the first half is offered. In particular,
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it is optimal to randomize and with probability l to offer one at the same price.

Thus, we have verified the equilibrium.

Proof of Lemma 2: In the interval (Eṽ, v̄], the function G(p) is continuous.

To see this, note that the denominator in (6) continuous. The numerator in (6)

is

µ

∫ v̄

p
(v − p)I{p<v}dFV (v)

which is continuous in p whether ṽ is a discrete or continuous random variable.

Thus, G(p) is continuous in (Eṽ, v̄].

In the interval (Eṽ, v̄], the function G(p) is strictly decreasing. Indeed, the

derivative of the numerator is µ(FV (p) − 1) < 0. The denominator is clearly

increasing in p. Hence we conclude that G(p) is strictly decreasing.

Because limp↓v̄ G(p) = 0, and limp↓Eṽ G(p) = ∞, it follows that a solution to

the equation G(p) = 1 exists. Because G is strictly decreasing, its inverse is also

strictly decreasing.

Proof of Theorem 3: We first show that the mixing distribution in Theorem

3 is well defined. Because FQ is a distribution, clearly, k(0) = 1 and k(1) = 0.

Also,

k(h) = 1− EFQ(j̃/(n− 1) = 1− EE[I{q̃<j̃/(n−1)}|j̃] = 1− EE[I{(n−1)q̃<j̃}|q̃]

= EB((n− 1)q̃;n− 1, h)

where B(x;n, h) is the distribution function of a binomial random variable with n

Bernoulli trials, each with a probability of successes h. Since B(x;n, h) is strictly

decreasing with h, it follows that also the expectation, k(h), is strictly decreasing.

18

18Formally, let j = bxc be the floor of x, then

B(j, n, h) = (n− j)
(n
j

)∫ 1−h

0
tn−j−1(1− t)jdt

and hence the probability is strictly decreasing. Informally, when we increase the probability of success
in each trial, then the probability of having a total of j or less successes strictly decreases - while this is
not true for the probability of having exactly j successes, it is true for the cumulative probability.
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From Lemma 2, we know that G is strictly decreasing, and hence Mn(p) =

h(G(p)) is strictly increasing. To conclude that Mn is a distribution with support

[G−1(1), G−1(0)], we verify:

Mn(G−1(1)) = h(1) = 0

and

Mn(G−1(0)) = h(0) = 1

Therefore, Mn is a distribution function.

Next, we apply k(h) to both sides of the definition of Mn(p) to get that in

(G−1(p), G−1(0)), we have K(p) = G(p). More generally,

K(p) =


1 p < G−1(1)

G(p) G−1(p) ≤ p < G−1(0)

0 G−1(p) ≤ p

Consider now the problem of the ith trader, assuming all other limit-order

traders follow the strategy stated in the theorem. For q ∈ (0, 1/(n− 1)], we have

Prob(q̃n ≥ q + S̃−1(Pi(q))) = Prob(q̃n > S̃−1(Pi(q))) = K(p)

where the second equality is the definition of K(p). Hence, the expected profits

associated with the “first” 1/(n-1) units, each unit may be offered at different

prices, is

∫ 1/(n−1)

0
µ(Pi(q)− v(Pi(q)))(1−FV (Pi(q))) +

1− µ
2

(Pi(q)− Eṽ)K(p) dq (A1)

We consider the value of the integrand for different p’s. For p < pc, the integrand

is negative because pc is the ask price of the competitive equilibrium. For p > v̄,
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the integrand is zero.

For p in the support of the mixing distribution, we use the definitions of G(p)

(equation (6)) and Mn(p) to conclude that the integrand of the objective (A1) is

zero. Therefore, the expected gain on the first 1/(n− 1) unit is at most zero, and

exactly zero if the units are offered in the interval of prices (pc, v̄).

We need to show that it is suboptimal to offer more than 1/(n− 1) units. But

this is obvious because the chances that additional units will be picked by the

noise traders are strictly smaller than the probability that the first 1/(n−1) units

are. Since the profitability of the latter is zero, it follows that it is suboptimal to

offer more than 1/(n− 1) units.

We conclude that it is optimal to offer 1/(n − 1) in the support of Mn and in

particular it is optimal to offer the entire block at the same random price with

distribution Mn. Finally, as we have seen, the expected profit is zero.

Proof of Corollary 1: The proof is in steps.

Step 1: Given δ > 0 and ε > 0, there exists an N , independent of p, such that

for all n > N , we have Prob(|S̃−i(p)−Mn(p)| > δ) ≤ ε/4. In particular, for every

p, S̃−i(p)−Mn(p) converges to zero in probability.

Indeed, we have (n−1)S̃−i(p) ∼ B(n−1,Mn(p)). Take N > 1/(εδ2), then from

Chebyshev’s Inequality

Prob(|S̃−i(p)−Mn(p)| > δ)

≤ V ar(S̃−i(p))

δ2
=
Mn(p)(1−Mn(p))

(n− 1)δ2
≤ 1

4nδ2
<
ε

4

Step 2: EFQ(S̃−i(p)) − FQ(Mn(p)) uniformly converges to zero. Let ε > 0 be

given. We need to show that there is an N such that for all n > N we have∣∣∣EFQ(S̃−i(p))− FQ(Mn(p))
∣∣∣ < ε.

The distribution function FQ is continuous in the closed interval [0, 1] and hence

it is uniformly continuous. Thus, there exists a δ > 0, associated only with ε,

such that if |q1 − q2| < δ, then |FQ(qq)− FQ(q2)| < ε/2.
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We take now N > 1/(εδ2) (as in Step 1). Now,

|EFQ(S̃−i(p))− FQ(Mn(p))|

≤E|FQ(S̃−i(p))− FQ(Mn(p))|

=E|FQ(S̃−i(p))− FQ(Mn(p))|I{|S̃−i(p)−Mn(p)|≤δ}

+ E|FQ(S̃−i(p))− FQ(Mn(p))|I{|S̃−i(p)−Mn(p)|>δ}

≤ ε
2

+ 2Prob
(∣∣∣S̃−i(p)−Mn(p)

∣∣∣ > δ
)
< ε

Step 3: We use Lemma 4 to replace, in Step 2, EFQ(S̃−i(p)) with FQ(Sc(p))

and conclude that FQ(Sc(p))− FQ(Mn(p))→ 0 uniformly.

Step 4: We are now ready to show that Sc(p)−Mn(p)→ 0 uniformly. In other

words, we need to show that given ε, there is an N , independent of p, such that

|Sc(p)−Mn(p)| < ε

The inverse distribution function, F−1
Q (x) is continuous in [0, 1] and hence uni-

formly continuous. Thus, there is a δ > 0 such that |x1 − x2| < δ implies

|F−1
Q (x1)−F−1

Q (x2)| < ε. From Step 3, we know that there is an N that depends

only δ such that for n > N , we have

|FQ(Sc(p))− FQ(Mn(p))| < δ

Thus, for n > N , we also have

|Sc(p)−Mn(p)| = |F−1
Q (FQ(Sc(p)))− F−1

Q (FQ(Mn(p)))| < ε

where the inequality follows from the uniform continuity of F−1
Q . This ends the

proof.
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